FUNCTIONS THEORY 2024-2025 - SCQ0094119
Topic outline
-
Schedule: Monday, Tuesday and Wednesday, 14.30-16.10, room 1BC50
Office hours
Wednesday 12.30-14 Torre Archimede, 5 floor, office 5DA9. Feel free to contact the teachers at annalisa.cesaroni@unipd.it.Plan of the course
- Part 0: Preliminaries (calculus and measure theory) [F, chapter 1], [E, appendices]
- Part 1: Elements of Geometric Measure Theory. Radon measures and Riesz theorem. Hausdorff measures. [EG, chapters 1,2] [F, chapter 7]
- Part 2: The theory of distributions [F, chapter 9]
- Part 3: Sobolev spaces [E chapter 5]
- Part 4: Functions of bounded variation [EG, chapter 5]
Main references
- [EG] Evans L.C.,and Gariepy, F.C., Measure theory and fine properties of functions, Boca Raton, CRC Press, 1992.
- [E] Evans, L.C., Partial Differential Equations, American Mathematical Soc., 2010.
- [F] Folland, G.B., Real Analysis. New York: Wiley Interscience, 1999.
Other references:
- Ambrosio, L.Corso introduttivo alla teoria geometrica della misura e alle superfici minime, Pisa, Scuola Normale Superiore, 2009.
- Ambrosio, L., Fusco, N., and Pallara, D., Functions of bounded
variations and free discontinuity problems, Oxford Mathematical
Monographs, 2000.
- Brezis, H.,Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer 2011
- Part 0: Preliminaries (calculus and measure theory) [F, chapter 1], [E, appendices]
-