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From Poincae we deduce the following :
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Typical problem in calculus of viations
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CHARACTERIZATION of the MINIMIZER-
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"Partial differential equation"
-
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.
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4) Gateaux derivative of Elf) at the minimer is 0
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"DIRECT METHODS In the CALCULUS of VANATIONS"

(by Torelli - 1920 - 1930)
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