
Problem sheet 1: Preliminaries
Functions theory 2024/2025

Exercise 1. Let U ⊆ Rn be an open bounded set. Let C0,α(U) for α ∈ (0, 1] be the space
of Hölder continuous functions of exponent α, so u ∈ C(Ū) and there exists C > 0 such
that |u(x) − u(y)| ≤ C|x − y|α for all x, y ∈ U . We define the norm ‖u‖α = ‖u‖∞ +

supx 6=y∈U
|u(x)−u(y)|
|x−y|α .

(1) Show that (C0,α(U), ‖u‖α) is a Banach space.
Hint: show that C(Ū), ‖ · ‖∞) is a closed subspace of (L∞(U), ‖ · ‖∞).

(2) Show that if un ∈ C0,α(U) is a sequence with ‖un‖α ≤ C, then up to a subsequence,
un → u in C0,β(U), where u ∈ C0,α(U) (that is the immersion C0,α(U) → C0,β(U)
is compact for every β < α).
Hint: use the Ascoli-Arzelà compactness theorem.

Exercise 2 (Hardy’s inequality). Let u ∈ C1(B(0, r)) where B(0, r) ⊆ Rn the ball of
center 0 and radius r. Assume that the dimension of the space is n ≥ 3.

(1) Show that
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Hint: Apply divergence theorem to xu2 and then Young inequality (that is 2ab ≤
a2/c+ cb2, for every c > 0).
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Conclude that, for δ ∈ (0, n− 2)ˆ
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Hint: recall Young inequality.

(3) Using 1, and 2, prove that u(x)
|x| ∈ L

2(B(0, r)) and there exists C = C(n) such thatˆ
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(4) Show that if n = 1, 2 and u(0) 6= 0 then u(x)
|x| 6∈ L
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Finally show that if u ∈ C1(Rn), n ≥ 3 with u, |∇u| ∈ L2(Rn), thenˆ
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Hint: use 2, with δ = n−2
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.
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