Problem sheet 3: Distribution theory Functions theory 2024/2025

Exercise 1. Let N > 1 and $E \subseteq \mathbb{R}^N$ be a bounded open set with boundary of class C^1 and consider the distribution

$$T_{\chi_E}(\phi) := \int_E \phi(x) dx.$$

Compute the distributional gradient of T_{χ_E} .

Exercise 2. Let $f : \mathbb{R} \to \mathbb{R}$, such that $f \in C^1(\mathbb{R} \setminus \{x_1, \ldots, x_m\})$, f has jump discontinuities in $\{x_1, \ldots, x_m\}$, and the classical derivative (defined in $\mathbb{R} \setminus \{x_1, \ldots, x_m\}$) satisfies $\frac{df}{dx} \in L^1_{\text{loc}}(\mathbb{R})$. Show that the derivative of f in the sense of distributions coincides with

$$f' = \frac{df}{dx} + \sum_{i=1}^{m} (f(x_i)^+ - f(x_i)^-)\delta_{x_i}$$

where $f(x_i)^+ - f(x_i)^- = \lim_{x \to x_i^+} f(x) - \lim_{x \to x_i^-} f(x)$ and δ_{x_i} is the distribution which associates to ϕ the value $\phi(x_i)$.

Exercise 3. Let $T \in \mathcal{D}'(I)$ for some interval $I \subseteq \mathbb{R}$. Show that T' = 0 in the sense of distribution (this means $T'\phi = -\int T\phi' dx = 0$) if and only if there exists a constant c and T = c (this means $T\phi = c \int \phi dx$).

Hint: argue as in the fundamental lemma of the calculus of variations.

Exercise 4.

Let $T \in \mathcal{D}'(U)$ be a positive distribution, that is $T(\phi) \ge 0$ for every test $\phi \ge 0$. Prove that T has order 0.

Hint: recall the property of positive linear functionals on $C_c(U)$

Exercise 5. Show that the distribution principal value of $\frac{1}{x}$ in \mathbb{R} is of order 1. Hint: it is trivial to check that it is of order 0 or 1. For $\varepsilon > 0$, take a test function ϕ_{ε} , with $\operatorname{supp}\phi_{\varepsilon} = [0, 1], 0 \le \phi_{\varepsilon} \le 1$ and $\phi_{\varepsilon}(x) = 1$ for $x \in (\varepsilon^2, \varepsilon)$...