PROBLEM SHEET 5: INEQUALITES IN SOBOLEV SPACES

Exercise 1 (Poincaré on strips). Let n > 1 and consider for $-\infty < a < b < +\infty$,

$$\Omega = \{ (x', x_n) \ x' \in \mathbb{R}^{n-1}, a < x_n < b \}.$$

Show that for every $u \in W_0^{1,p}(\Omega)$ for $p \in [1, +\infty)$ there holds

$$||u||_p \le |b-a|||Du||_p$$

Hint: reduce to $u \in C_c^{\infty}(\Omega)$ and write it as $u(x', x_n) = \int_a^{x_n} \frac{\partial}{\partial x_n} u(x', t) dt$. Then use Hölder.

Exercise 2. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open connected set of class C^1 , let $g \in L^2(\Omega)$ with $\int_U g(x) dx = 0$ and consider the energy

$$E(u) = \int_{\Omega} |\nabla u|^2 + u(x)g(x)dx \qquad u \in W^{1,2}(\Omega).$$

Note that E(u+k) = E(u) for every constant k. Let $C = \{u \in W^{1,2}(\Omega), \int_{\Omega} u(x)dx = 0\}$. Show that there exists a minimizer of E(u) in C.

Hint: use Hölder inequality and then Poincaré inequality to show that every minimizing sequence is bounded. Then proceed by direct methods.

Exercise 3. Let $U \subseteq \mathbb{R}^n$ be a bounded open set of class C^1 . Consider the closed ball

$$B = \{ u \in W^{1,p}(U), \|u\|_{W^{1,p}} \le 1 \}.$$

In which functional spaces is this set compact?

Exercise 4 (Compact embedding in \mathbb{R}^n). Let $V : \mathbb{R}^n \to (0, +\infty)$ be a continuous function with $\lim_{|x|\to+\infty} V(x) = +\infty$.

For $p \in [1, n)$ we define

$$H = \{ u \in W^{1,p}(\mathbb{R}^n), \int_{\mathbb{R}^n} |u(x)|^p V(x) dx < +\infty \}$$

endowed with the norm $||u|| = ||Du|||_p + \left(\int |u(x)|^p V(x) dx\right)^{\frac{1}{p}}$.

- (1) Show that $(H, \|\cdot\|)$ is a Banach space.
- (2) Let f_k be a bounded sequence in H. Show that up to passing to a subsequence $f_k \to f$ in $L^p_{loc}(\mathbb{R}^n)$.

Hint: Use Rellich–Kondrachov theorem and diagonalization argument.

We recall the **Kolmogorov compactness theorem** Let $p \in [1, +\infty)$. Assume

- u_k in bounded in $L^p(\mathbb{R}^n)$,
- $\lim_{|h|\to 0} \|\tau_h u_k u_k\|_p = 0$ uniformly in k
- for all $\varepsilon > 0$ there exists a compact $C_{\varepsilon} \subseteq \mathbb{R}^n$ such that $\|u_k\|_{L^p(\mathbb{R}^n \setminus C_{\varepsilon})} \leq \varepsilon$ for all k.

Then u_k admits a subsequence strongly convergent in $L^p(\mathbb{R}^n)$.

Using this theorem show that the subsequence $f_k \to f$ obtained in item 2 is actually converging in $L^p(\mathbb{R}^n)$. This says that the embedding $H \to L^p(\mathbb{R}^n)$ is compact (also $H \to L^q(\mathbb{R}^n)$ for $q \in [p, p^*)$ is compact).