PROBLEM SHEET 4: SOBOLEV SPACES

Exercise 1 (Sobolev spaces in dimension 1).

- (1) Let $p \in [1, +\infty]$. Show that there exists a constant $c > 0$ (independent of p) such that for all $u \in W^{1,p}(\mathbb{R})$ there holds $u \in L^{\infty}(\mathbb{R})$ with $||u||_{L^{\infty}} \leq c||u||_{W^{1,p}}$. So the injection $W^{1,p}(\mathbb{R}) \to L^{\infty}(\mathbb{R})$ is continuous. Hint: by density reduce to $u \in C_c^1(\mathbb{R})$. Take $G(u) = |u|^{p-1}u$ and write $G(u(x)) =$ $\int_{-\infty}^{x}$ $\frac{d}{dt}G(u(t))dt$.
- (2) Let $\phi \in C_c^1(\mathbb{R})$ and define $u_n(x) := \phi(x+n)$. Show that u_n is bounded in $W^{1,p}(\mathbb{R})$ for any $p \in [1, +\infty]$ and that is does not admit any converging subsequence in $L^q(\mathbb{R})$ for any possible $q \in [1, +\infty]$.

Exercise 2 (Characterization of Sobolev spaces). Let $p \in (1, +\infty]$ and $u \in L^p(\mathbb{R}^n)$. Define $\tau_h u(x) := u(x+h).$

(1) Show that if $u \in W^{1,p}(\mathbb{R}^N)$ for $p \in (1, +\infty)$ then

$$
\|\tau_h u - u\|_p \le |h| \|\nabla u\|_p.
$$

Deduce that if $u \in W^{1,p}_{loc}(\mathbb{R}^N)$ for $p \in (1, +\infty)$ then for all open bounded set Ω and all $\omega \subset \subset \Omega$, there holds

$$
\|\tau_h u - u\|_{L^p(\omega)} \le |h| \|\nabla u\|_{L^p(\Omega)} \qquad \text{for } |h| \le \text{dist}(\omega, \partial\Omega).
$$

Hint: reduce to smooth functions and write $\tau_h u(x) - u(x) = \int_0^1$ $\frac{d}{dt}u(x+th)dt$. Recall Jensen inequality: for ϕ convex $\phi(\frac{1}{b-1})$ $\frac{1}{b-a}\int_a^b f(t)dt \leq \frac{1}{b-a}$ $\frac{1}{b-a}\int_a^b \phi(f(t))dt.$

(2) Show that if $u \in W^{1,\infty}(\mathbb{R}^N)$ then

$$
\|\tau_h u - u\|_{\infty} \le |h| \|\nabla u\|_{\infty}.
$$

So $u \in W^{1,\infty}(\mathbb{R}^N)$ has a representative which is a Lipschitz continuous function.

Hint: Observe that if $u \in W^{1,\infty}(\mathbb{R}^N)$ then $u \in W^{1,p}_{loc}(\mathbb{R}^N)$ for all $p \leq +\infty$. Now use the fact that $\lim_{p\to+\infty} ||f||_{L^p(\Omega)} = ||f||_{L^{\infty}(\Omega)}$ if $f \in L^q(\Omega)$ for all $q \leq +\infty$ for Ω bounded open set.

(3) Let $p \in (1, +\infty]$. Assume there exists $C > 0$ such that

$$
\|\tau_h u - u\|_p \le C|h|
$$

Show that $u \in W^{1,p}(\mathbb{R}^N)$ and $C \geq ||\nabla u||_p$. Hint: Consider $\int_{\mathbb{R}^N} \frac{u(x+te_i)-u(x)}{t}$ $\frac{d}{dt}e^{i\omega t}(\theta(x))dx$ for some $\phi \in C_c^{\infty}(\mathbb{R}^n)$. Apply Hölder, and show that for every *i*, $\int_{\mathbb{R}^n} u \phi_{x_i} dx \leq C ||\phi||_{p'}$.

Exercise 3. Let U be an open bounded set with C^1 boundary in \mathbb{R}^n . Show that for all $u \in W_0^{1,2}$ $U_0^{1,2}(U) \cap W^{2,2}(U)$ there holds

$$
\|\nabla u\|_2^2 \le \|u\|_2 \|\Delta u\|_2
$$

where $\Delta u = \text{div} \nabla u$ (in weak sense).

Hint: Recall the density result and the definition of $W_0^{1,p}$ $v_0^{1,p}$. Integrate by parts.