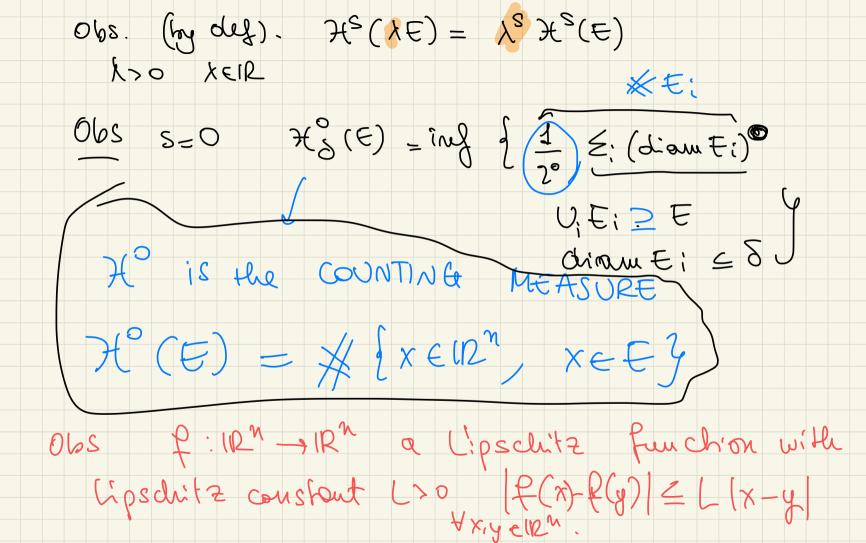


-) Cetting 8-0+

 $\mathcal{H}^{S}(AUB) = \mathcal{H}^{S}(A) + \mathcal{H}^{S}(B)$ (1) dist (A,B)>0

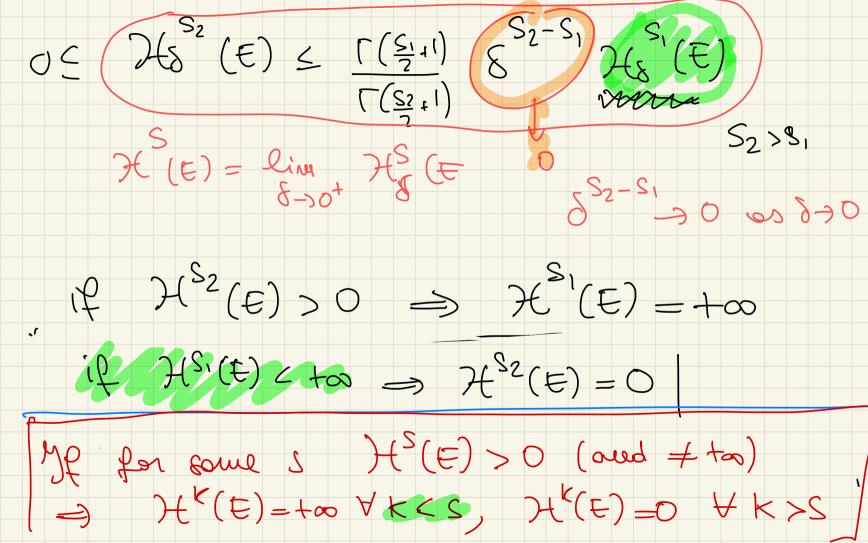
De H^S(.) is ou outer measure

I M_ & meannable sets Br HS: A is meaning if & B & IR^M H^S(B) = H^S(A ∩ B) + H^S(B)A) HS is a meanne (by Corotheodory) Im is a portilan métasure criterium) by prop () BSM (closed etts are meanables W.r.t. HS => all bonel sets ore measurable w.r.t HS).

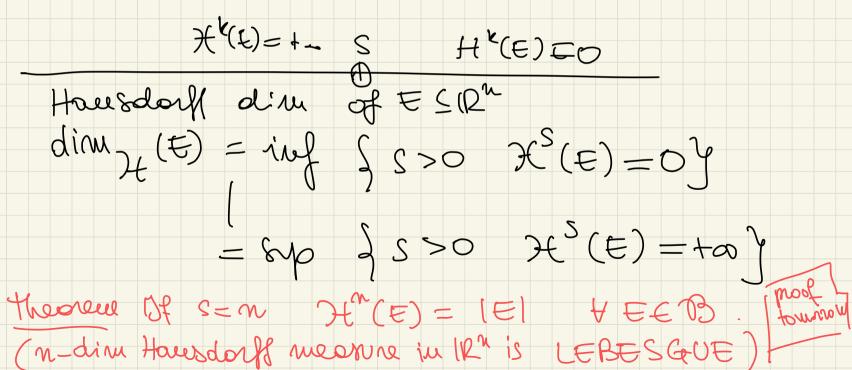


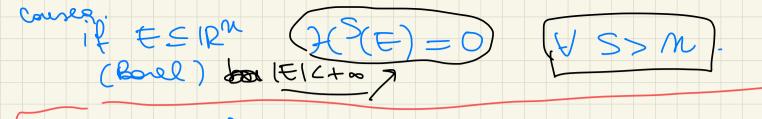
 $\mathcal{H}^{S}(\mathcal{P}(\mathcal{E})) \leq \mathcal{L}^{S} \mathcal{H}^{S}(\mathcal{E})$ Observetion SICS2 Spixed ESIR" fixed $= \underbrace{\operatorname{cos}}_{S_2} \underbrace{\operatorname{Eq}}_{S_2} S_2 - S_1 \\ = \underbrace{\operatorname{cos}}_{I_{\tau}} \left(\operatorname{dram}(E_i) \right)^{S_1} =$ $= \underbrace{\begin{array}{c} \omega_{S_2} & 2^{S_1} \\ 2^{S_1} & \omega_{S_1}^{S_2-S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \\ 2^{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \\ 2^{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \\ 2^{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \\ 2^{S_1} \end{array}}_{2^{S_1}} \underbrace{\begin{array}{c} \omega_{S_1} \end{array}}_{2^{S_1}}$

 $= \left(\underbrace{\prod_{i=1}^{n}}_{i=1}^{S_2 - S_1} \prod_{i=1}^{r} \underbrace{\prod_{i=1}^{n}}_{i=1} \right) = \underbrace{\int_{i=1}^{s_2 - S_1}}_{i=1} \prod_{i=1}^{r} \underbrace{\bigcup_{i=1}^{s_1}}_{i=1} \underbrace{\int_{i=1}^{s_1}}_{i=1} \underbrace{\int_{i=1}^{s_2 - S_1}}_{i=1} \prod_{i=1}^{r} \underbrace{\bigcup_{i=1}^{s_1}}_{i=1} \underbrace{\bigcup_{i=1}^{s_1}}_{i=1} \underbrace{\int_{i=1}^{s_2 - S_1}}_{i=1} \prod_{i=1}^{r} \underbrace{\bigcup_{i=1}^{s_1}}_{i=1} \underbrace{\bigcup_{i=1}^{s$ $\mathcal{H}_{\delta}^{S_{2}}(E) \leq \frac{\Gamma(\frac{S_{1}}{2}+1)}{\Gamma(\frac{S_{2}}{2}+1)} \delta^{S_{2}-S_{1}}\left[\Sigma; \frac{\omega_{S_{1}}}{2^{S_{1}}}\left(\text{atom }Ei\right)^{S_{1}}\right]$ → toling the infimum UiE;2E $\Gamma(\underline{S_1}, i) \quad S^{S_2 - S_1}$ $\mathcal{H}_{\delta}^{S_2}(\mathbf{E}) \leq$ HS'(E) $\left(\text{etting } \delta \rightarrow 0\right) = \Gamma\left(\frac{c_2}{2} + 1\right)$



Shere exists at most one SZO such that $\mathcal{H}^{S}(E) \in (0, t_{20})$

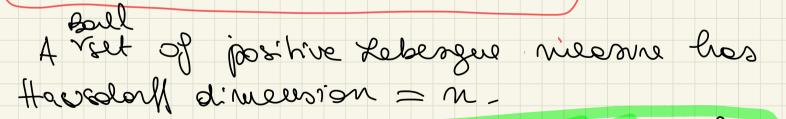




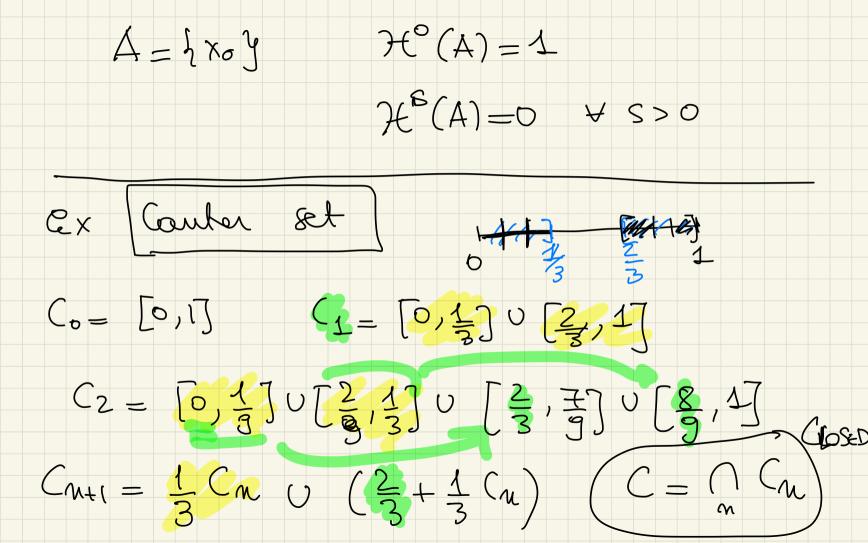
couseq. HS paszm is NOT A RADON MEASURE

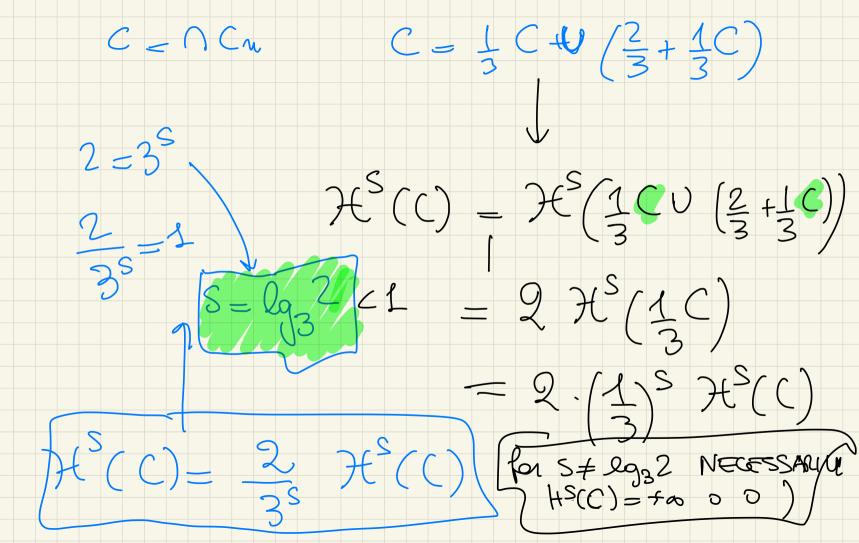
K⊆IRⁿ K compact [K1>0 ⇒)Hⁿ(K)>0

 \rightarrow) $\mathcal{H}^{S}(\mathbf{k}) = +\infty \forall S \leq M$,



A Borel set of NULL LEBESGUE neasure lies Housdorfs dim =n





Cautor set has Lebesque measure = Ros Herdorff dimeension lyz2