Det of derivative of a distribution

 $d=(\alpha_1...\alpha_M)\in N^2$ $|\alpha|=\alpha_1+...+\alpha_m$ TED'(U) USD" open set $D^{\alpha}T(\phi):=(-1)^{|\alpha|}T(D^{\alpha}\phi)+\phi\in\mathcal{C}_{c}^{\infty}(U)$ (<mark>so every d'étribution admits devivatives of</mark> every order). De of WEAK DERIVATIVE Let fel'ex (U) and Te (d) = S fddx + de C° (U)
det de N° 17f 7 n c L'ex (U) wer that

 $D^{\alpha}T_{\rho} = T_{\nu_{\alpha}}$ in the sense of distribution of d and D^{α} $f|_{\text{tot}}$ is \cdot $(-1)^{kl}\int f D^d\varphi dx = \int v d\varphi dx \qquad \forall \varphi \in C_c^{\infty}(U)$ there Na is the credit derivative of f Obs 37 facture à vous a-derivative, it is if not va, wa so in that $\int v_d dxdx=\int w_d dxdx$ there J $v_{d} = w_{d}$ a re tog the fundaces. Cemence of the

su porticular à le m the mean seuse is the

L'esc (U) function vi such that

 $\int f \frac{\partial}{\partial x_i} \phi \ dx = - \int v_i \phi \ dx \qquad \forall \phi \in \mathcal{C}_z^{\infty}(U)$ (Me integration by parts famille Coldes

Recall that of has compe et sympart inside U!

Obs It is not always true that ft (°CC)

 $T_H^1 = \delta_o$ (so thes not a neath derivative!

 $EX2$ toke $LEC^1([R\setminus\{x_{1},...,x_{m}\}])$.

 X_{1} C X_{2} C C X_{1} $f(e^{t}(-x,x))$ $e^{t}(x,x_{2})$, $e^{t}(x_{2},x_{3})$..., $e^{t}(x_{m},x_{0})$
 $f^{1}(t_{m},x_{0})$ and $f^{1}(t_{m},x_{1})$, $f^{2}(x_{m},x_{1})$ lim $f^{2}(x_{1}^{-})$

Observation fet IC (2 open interval.

there T is constant, that is J CEIR such $\overline{}$

 H_{tot} $T = T_c$ $(T$ is the distribution associated

to the coustace + fuction)

Hust is $T(\hat{\varphi}) =$ $\begin{array}{ccc} \mathcal{P} & \mathcal{C} & \mathcal{A} & \mathcal{A} \\ \mathcal{C} & \mathcal{C} & \mathcal{C} & \mathcal{A} & \mathcal{A} \end{array} \quad \forall \phi \in \mathcal{C}_c^\infty(\mathbb{T}).$

(fee mode page - argue at in the corellary of the fund one. Denise of the cole of variations)

l'artinerant in 12 bout without $2x3$ $C =$ counter cet = \cap C_{k} $Co = [O \ 1]$ $C_{k+1} = \frac{1}{3} C_{k+1} \cup (\frac{1}{3} C_{k} + \frac{2}{3})$ $f_{o(x)} = \begin{cases} 0 & x \in O \\ x & x \in \{0,1\} \end{cases}$ $f^{\circ}(x) =$ 1×21 $f_1(x) = f_0(x) \lor x \in R \setminus C_0$ $f(x) =$ $f_1(x) = \frac{1}{2} \times 6 (\frac{1}{3}, \frac{2}{3})$
and then to this off ne

f Is the CANTOR $f_n \rightarrow f$ leafounly on to, if $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{if } n \in \mathbb{N} \end{array} \end{array}$ $f(x) = 3 + \frac{3}{2}$ f is controus on every internel cortoined interval contained is constant on every!
is constant on every!
I'm R \ C C cantor set. ↓ é is constant on every interval cortained
l'in R > C conterval autoined in R > C.
Il = 0 on verey interval contained in R > C. $IRAC =$ intervals $|Cl = O$ $\theta = 0$ a.e. $(T_{\rho})^{\prime}$ \neq 0 $($ $\sqrt[n]{e}$ $)$ $($ $\sqrt[n]{e}$ $)$ \leftarrow T_{e} \rightarrow T_{e} \rightarrow T_{e} $f(x) = \frac{1}{2} \int_{0}^{\pi} \frac{1}{2} dx$
 $\frac{1}{2} \int_{0}^{\pi} \frac{1}{2} dx$
 $\frac{1}{2} \int_{0}^{\pi} dx$ \Rightarrow f = constant t has not weak devivative, (TE) is a dist nitrution (Te)' is a dist nitution

 $H_1 \oplus (12^n) \rightarrow 0^{\circ}$ e_{X} $M_{d}(u) = C_{0}u + E_{i}c_{i} \frac{d}{dx}u$

 $+ 4; C; D u + C o u$

Det dit 4 be a 2 mer alflerential

IS & FUNDAMENTAL SOWTION $T\in\mathbb{Q}^1(\mathbb{R}^n)$ $\frac{d}{dt} \pm \frac{1}{2} \frac{d}{dt}$ $\delta_{5}(T) = \delta_{0}$ $4:400+$ $Y(T)(\varphi) = \varphi(0) + 4\pi e^{i\varphi(nx^2)}$