Preliruirearies ou calculus

1) $(C(\overline{U}), \|\cdot\|_{\infty})$ is a whope co of $(L^{\infty}(U), \|\cdot\|_{\infty})$ ex1) vince $e(\overline{U}) \subseteq L^{q}(\overline{U})$ and $U_{AL} \in e(\overline{U})$ concluy in L[®] $\rightarrow u_{n} \rightarrow u$ unpouly in $\mathcal{C}(\overline{U}) \rightarrow \mathcal{N}\mathcal{E}\mathcal{C}(\overline{U})$ Het un be a Cauchy sep. in C^{0,a} (V) =) un is Cauchy in $\mathcal{C}(\overline{U}) \Longrightarrow \mathcal{U}_n \longrightarrow \mathcal{U}$ milpreeleg in \overline{U} $|\underline{U}(\underline{x}) - \underline{U}(\underline{y})| \le \lim_{n \to \infty} |\underline{u}_n(\underline{x}) - \underline{u}_n(\underline{y})| \le C \Longrightarrow \mathcal{U} \in \mathbb{C}^{0, q}(U)$ $|\underline{x} - \underline{y}|^{\alpha}$ by pointwise like it Finally $\frac{|(\mu - \mu_n)(x) - (\mu - \mu_n)(y)|}{|x - y|^d} \leq \frac{|(\mu - \mu_n)(x) - (\mu_n - \mu_n)(y)|}{|x - y|^d}$ ask,n-sta $u_n \rightarrow u$ in $C^{\nu,\alpha}(\bar{U})$,

(2) First of all we get that limiting EC and uneaver $[u_{n}(x) - u_{n}(y)] \leq C[x-y]^{d} \quad \forall x, y \in \overline{U} \implies by A.A. up to$ subsequences un a in C(I). By the same argument as in (1), $u \in C^{0, \alpha}(\overline{U})$. $\|u\|_{L^{0, \alpha}} \leq C$. hat BLX. Tix 270 and consider $(1) ||x-y| \leq \delta ||(\underline{(-u_m)(x)} - (\underline{(u-u_m)(y)})|| = ||x-y||^{d-\beta} 2 ||u_m-u||_{b^{0}, a_{(\overline{U})}}$ $||x-y||^{\beta} \leq \delta^{\alpha-\beta} 2C$ (u-un) (x) - (u-un)(y) | ≤ 8-2 11 u- un l/∞ 0 1x-4128 1×-4[P consider 222(8) lle-unllas 5 d to for each dro and we get $[(y-u_n)(x)-(y-u_n)(y)] \leq \mathbb{C}d^{-\beta} \rightarrow 0$. $|y-y|^{\beta} \leq \mathbb{C}d^{-\beta} \rightarrow 0$.

Ex 2 1 Note that dis (xu2) = Mu2 + 2u x. Vu b'm ce $\gamma(x) = X$ (×) on aB(o,r) Note terret $|2u \times \nabla u| \leq 2|u| |x| \cdot |\nabla u| \leq 2|u| \cdot r \cdot |\nabla u| \leq |u|^2 + r^2 |\nabla u|^2$ substitute in & seed divide by r2. Thinst equality is just divergence theorem. Observe that $|2u \underbrace{x} \cdot \nabla u| \leq 2 \underbrace{|u|}_{|x|} |\nabla u| \leq \frac{1}{\delta} |\nabla u|^2 + \frac{\delta u^2}{|x|^2}$ for every $\delta : 0$. (L) By (L) $\int (n-2-\delta) \frac{u^2}{1 \times n^2} \leq \int \int |\nabla u|^2 + \int u^2 (n+1) + \int |\nabla u|^2 dx - \frac{1}{2} \int u^2 dS \quad \forall \in Cr$ Brude Br $\leq \|u\|_{2}^{2} \cdot \frac{|\partial Be|}{\varepsilon} = \|u\|_{0}^{2} \cdot C\varepsilon^{n-2}$ So line ((n-2=3) u² dx exists finite. E+0+ BriBc 1x1² (4) u(0) =0 = onrome without loss of generality u(0) = x>0.

Here $\overline{f} \in I$ $u(x) \ge \alpha \quad \forall x \in B_{\overline{z}'}$ by interation on spheres (co-one f.) $\int \frac{u^2(x)}{(x)^2} dx \ge \int \frac{u^2(x)}{x^2} dx \ge \frac{a^2}{2} \int \frac{1}{(x)^2} dx = \frac{a^2}{4} \int \frac{e^4}{2} \frac{m \omega_m n^{-4}}{n^2} = \frac{a^2}{2} \frac{m \omega_m \int \frac{e^4}{2} \frac{m^{-3}}{2} \frac{1}{2} \frac{1$ $\begin{aligned} & \int f \ u, \ |\nabla u| \in (2(\mathbb{M}^{n})) \ choose \ \delta = \underbrace{m-2}_{2} \ in \ (3) \ oevd \ if \ m=1, \ m=2 \\ & ue \ set \ \underbrace{m-2}_{B_{2}} \ \underbrace{u'(x)}_{1/2} \ bx \ \leq \underbrace{2}_{M-2} \ \int |\nabla u|^{2} \ f \ 1 \ \int u^{2} dS \\ & B_{2} \ \underbrace{lxl^{2}}_{B_{2}} \ B_{2} \ \underbrace{lxl^{2}}_{B_{2}} \end{aligned}$