Problem sheet 2: Measure theory Functions theory 2024/2025

Exercise 1.

Let μ be a Radon measure on \mathbb{R}^n . We define the support of μ as

supp
$$\mu = \mathbb{R}^n \setminus N$$
 where $N = \bigcup \{A \subseteq \mathbb{R}^n, A \text{ open set}, \mu(A) = 0\}$.

Prove that $\bar{x} \in \text{supp } \mu$ iff $\int_{\mathbb{R}^n} f(x) d\mu(x) > 0$ for all $f \in C_c(\mathbb{R}^n, [0, 1])$ with $f(\bar{x}) > 0$.

Exercise 2. Let μ be a Radon measure on \mathbb{R}^n and $f \in L^1(\mu)$, with $f \ge 0$.

- (1) Show that for every $\varepsilon > 0$ there exists $\delta > 0$ such that if A is a Borel set with $\mu(A) \leq \delta$ then $\int_A f(y)d\mu \leq \varepsilon$. Hint: argue by contradiction. Recall that if $\mu(A) = 0$ then $\int_A f(y)d\mu = 0$.
- (2) Show that $\nu(A) := \int_A f(y) d\mu$ is a Radon measure.

Exercise 3. Let \mathcal{H}^s the Hausdorff s measure in \mathbb{R}^n . Show that if s < n, then \mathcal{H}^s is not a Radon measure.

Exercise 4. Let $f : \mathbb{R}^n \to \mathbb{R}^k$ be a Lipschitz function (that is there exists C > 0, called the Lipschitz constant of f, such that $|f(x) - f(y)| \leq C|x - y|$ for all $x, y \in \mathbb{R}^n$). Show that for all s > 0 and all $A \subseteq \mathbb{R}^n$, there holds

$$\mathcal{H}^s(f(A)) \le C^s \mathcal{H}^s(A)$$

where C is the Lipschitz constant of f.