Slides
h 0 00 complex numbers and complex exponentials.pdf
h 01 03 what is an ODE.pdf
h 01 04 which type of ODE.pdf
h 01 05 compute the equilibria.pdf
h 01 06 build phase portraits.pdf
h 01 07 what is control.pdf
h 01 08 how to linearize.pdf
h 01 09 when is linearization meaningful.pdf
h 01 10 on the superposition principle.pdf
h 01 11 what is an impulse response.pdf
h 01 12 1D convolution in CT.pdf
h 01 13 computing free and forced responses with Laplace.pdf
h 01 13 computing free and forced.pdf
h 01 14 state space representations.pdf
h 01 15 ARMA to SS.pdf
h 01 16 eigendecompositions for SS.pdf
h 02 06 explain BIBO stability.pdf
h 02 07 connect BIBO stability with impulse response.pdf
h 03 03 what is a RR.pdf
h 03 04 how to get a RR from an ODE.pdf
h 03 05 different types of RRs.pdf
h 03 06 computing equilibria.pdf
h 03 07 phase portraits for RRs.pdf
h 03 08 what is automatic control.pdf
h 03 09 linearizing a RR.pdf
h 03 10 when is linearization meaningful.pdf
h 03 11 on the superposition principle.pdf
h 03 12 what is an impulse response.pdf
h 03 13 convolution.pdf
h 03 14 computing free and forced responses.pdf
h 03 15 state space representations.pdf
h 03 16 state space from ARMA.pdf
h 03 17 connections btw eigendecompositions and free evolutions.pdf
h 04 01 risposta a regime.pdf
h 04 02 introduzione alla risposta al transitorio.pdf
h 04 03 transitorio per sistemi del primo ordine.pdf
h 04 04 transitorio per sistemi del secondo ordine.pdf
h 04 05 effetto dellapprossimazione ai poli dominanti.pdf
h 04 06 explain BIBO stability.pdf
h 04 07 connect BIBO stability with impulse response.pdf
h 06 01 block diagrams.pdf
h 07 01 the Routh criterion.pdf
h 07 02 the root locus.pdf
h 08 02 full state feedback control.pdf
h 08 03 Luenberger observers.pdf
h 08 04 poles placement with PIDs.pdf
h 08 05 effetto della retroazione sui disturbi.pdf
h 08 06 effetto della retroazione sul transitorio.pdf
h 08 07 effetto della retroazione sulla sensitivita.pdf
h 08 08 effetto della retroazione sullandamento a regime.pdf
s 00 00 complex numbers (again).pdf
s 0 00 complex numbers and complex exponentials.pdf
s 01 04 which type of ODE.pdf
s 01 05 compute the equilibria.pdf
s 01 06 build phase portraits.pdf
s 01 07 what is control.pdf
s 01 08 how to linearize.pdf
s 01 09 when is linearization meaningful.pdf
s 01 10 on the superposition principle.pdf
s 01 11 what is an impulse response.pdf
s 01 12 1D convolution in CT.pdf
s 01 13 computing free and forced responses with Laplace.pdf
s 01 13 computing free and forced.pdf
s 01 14 state space representations.pdf
s 01 15 ARMA to SS.pdf
s 01 16 eigendecompositions for SS.pdf
s 02 06 explain BIBO stability.pdf
s 02 07 connect BIBO stability with impulse response.pdf
s 03 03 what is a RR.pdf
s 03 04 how to get a RR from an ODE.pdf
s 03 05 different types of RRs.pdf
s 03 06 computing equilibria.pdf
s 03 07 phase portraits for RRs.pdf
s 03 08 what is automatic control.pdf
s 03 09 linearizing a RR.pdf
s 03 10 when is linearization meaningful.pdf
s 03 11 on the superposition principle.pdf
s 03 12 what is an impulse response.pdf
s 03 13 convolution.pdf
s 03 14 computing free and forced responses.pdf
s 03 15 state space representations.pdf
s 03 16 state space from ARMA.pdf
s 03 17 connections btw eigendecompositions and free evolutions.pdf
s 04 01 risposta a regime.pdf
s 04 02 introduzione alla risposta al transitorio.pdf
s 04 03 transitorio per sistemi del primo ordine.pdf
s 04 04 transitorio per sistemi del secondo ordine.pdf
s 04 05 effetto dellapprossimazione ai poli dominanti.pdf
s 06 01 block diagrams.pdf
s 07 01 the Routh criterion.pdf
s 07 02 the root locus.pdf
s 08 02 full state feedback control.pdf
s 08 03 Luenberger observers.pdf
s 08 04 poles placement with PIDs.pdf
s 08 05 effetto della retroazione sui disturbi.pdf
s 08 06 effetto della retroazione sul transitorio.pdf
s 08 07 effetto della retroazione sulla sensitivita.pdf
s 08 08 effetto della retroazione sullandamento a regime.pdf