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Contents map

developed content units taxonomy levels
observer u1, e1

prerequisite content units taxonomy levels
feedback u1, e1
continuous time LTI systems u1, e1
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Main ILO of sub-module “Introduction to Luenberger observers”

Derive the error dynamics equation for state estima-
tors and explain its significance for observer stability

Describe the meaning of the gain matrix L in Luenberger observers

List rules of thumb to select estimator poles based
on controller dynamics and system characteristics

Discuss the trade-offs between fast and slow observers
in the presence of process and measurement noise
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Control-law design for full-state feedback

from

ẋ = Ax +Bu C y

−K

xu

to

ẋ = Ax +Bu C y

−K estimator

x

x̂

u
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First idea for how to estimate x: open loop estimator

I know
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(0)
u(k)
A, B

Ô⇒ I can simulate { x̂(0) = x(0)
˙̂x = Ax̂ +Bu

u plant (A, B)

model
(A, B)

x

x̂

Dynamics:

x(t) = eAtx(0) + ∫
t

0
eA(t−τ)Bu(τ)dτ x̂(t) = eAtx(0) + ∫

t

0
eA(t−τ)Bu(τ)dτ

though, is this strategy robust? no! if there is uncertainty the estimation error
x̃(t) ∶= x(t) − x̂(t) may diverge
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Estimator design
Idea: use feedback

u plant (A, B)

model
(A, B)

C

C

L

x

x̂

y

+ŷ
−

ỹ

{ x̂(0) = x(0)
˙̂x = Ax̂ +Bu + L (y − C x̂)
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What are the dynamics of the error x̃ ∶= x − x̂?

⎧⎪⎪⎨⎪⎪⎩

ẋ = Ax +Bu
˙̂x = Ax̂ +Bu + L (y − C x̂)

⇓
˙̃x = ẋ − ˙̂x = A (x − x̂) +Bu −Bu − L (y − C x̂)

⇓
˙̃x = (A − LC) x̃

What decides the stability and speed of the dynamics of the error? The eigenvalues of
A − LC!
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Dynamics of the error vs. dynamics of the state

ẋ = Ax +Bu ˙̃x = (A − LC) x̃

x1

x2

x̃1

x̃2
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How can we design L?
For (A, B, C , 0) fully observable & in observation canonical form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
...

. . .
. . .

...
...

...
. . . 1

−an 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C = [1 0 . . . 0]

det (sI −A) = sn + a1sn−1 + . . . + an

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1
L2
...

Ln

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ô⇒ LC =

⎡⎢⎢⎢⎢⎢⎢⎣

L1 0 ⋯ 0
...

...
...

Ln 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦
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. . . 1
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LC =

⎡⎢⎢⎢⎢⎢⎢⎣

L1 0 ⋯ 0
...

...
...

Ln 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎦

⇓

A − LC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 − L1 1 0 . . . 0
−a2 − L2 0 1 . . . 0

...
...

. . .
. . .

...
...

...
. . . 1

−an − Ln 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇓

det (sI − (A − LC)) = sn + (a1 + L1) sn−1 + . . . + (an + Ln)
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Using acker for designing L

% controller design
K = acker( A, B, afPoles );

% observer design
L = ( acker( A', C', afPoles ) )';
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how to select the poles of the estimator
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Estimator poles selection – rules of thumb
• the observer should be 2→ 6 times faster than the controller
• the more the sensors are noisy, the slower the observer should be
• the slower the observer, the less resilient the controller is to disturbances

algorithms for designing L:
• dominant second order poles
• LQR
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Estimator poles selection – connections with estimation theory

{ ẋ = Ax +Bu
y = Cx

↦ { ẋ = Ax +Bu +w
y = Cx + ν

Estimator as before:
˙̂x = Ax̂ +Bu + L (y − C x̂)

New error dynamics:
˙̃x = (A − LC) x̃ +w − Lν

Trade-off:
• L big Ô⇒ effect of w is negligible but ν is amplified
• L small Ô⇒ effect of ν is negligible but w has bigger influences
optimal strategy in a statistical sense requires Kalman filtering (not in this course)
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Summarizing

Derive the error dynamics equation for state estima-
tors and explain its significance for observer stability

Describe the meaning of the gain matrix L in Luenberger observers

List rules of thumb to select estimator poles based
on controller dynamics and system characteristics

Discuss the trade-offs between fast and slow observers
in the presence of process and measurement noise
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Self-assessment activities
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Question 1

Why is an open-loop estimator generally not considered a robust method for state
estimation?

Potential answers:

I: Because it can track the states accurately even with uncertainties.
II: Because it uses feedback to correct errors in real time.

III: Because in the presence of model uncertainties or disturbances, the estima-
tion error may diverge.

IV: Because it relies on noisy measurements, which destabilize the estimation.
V: I do not know
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Question 2

What determines the stability and speed of convergence of the estimation error
x̃ = x − x̂ in a full-state observer?

Potential answers:

I: The eigenvalues of matrix B.
II: The input u(t) and measurement noise.

III: The initial state x(0).
IV: The eigenvalues of the matrix A − LC .
V: I do not know
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Question 3

In the observer canonical form, how does the gain matrix L affect the characteristic
polynomial of the observer error dynamics?

Potential answers:

I: It multiplies the coefficients of the system matrix A.
II: It adds to the coefficients of the characteristic polynomial of A.

III: It replaces the eigenvalues of A with the eigenvalues of B.
IV: It subtracts from the output matrix C to reduce measurement noise.
V: I do not know
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Question 4

Why is it generally recommended for the observer poles to be 2 to 6 times faster than
the controller poles?

Potential answers:

I: To ensure the controller has enough time to react to the observer.
II: To make the estimation error dynamics faster than the control system, en-

abling accurate feedback.
III: To slow down the observer and reduce noise amplification.
IV: To match the sampling rate of the digital controller.
V: I do not know
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Question 5

What is a trade-off involved when choosing faster poles for the observer?

Potential answers:

I: Faster poles increase sensitivity to measurement noise.
II: Faster poles always improve estimation accuracy, regardless of noise.

III: Slower poles make the observer more responsive.
IV: Faster poles reduce computational complexity.
V: I do not know
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Recap of sub-module “Introduction to Luenberger observers”
• one may estimate the states of a system by means of making the estimated state

be so that it dynamically matches the measured values
• this strategy though is as valid as the model is, as a description of the system
• the situation is though in practice not as simple as seen here - indeed the here

presented case is for “fully observable” systems (a concept that you’ll see in
systems theory) and thus not applicable all the times (but extensible to!)
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