
Most important python code for this sub-module

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

Full state feedback control

- Full state feedback control 1

•

notes

Contents map

developed content units taxonomy levels
poles placement u1, e1

prerequisite content units taxonomy levels
feedback control u1, e1
state space LTI systems u1, e1

- Full state feedback control 2

•

notes

Main ILO of sub-module “Full state feedback control”

Formulate a state feedback control law u = −Kx to
modify the closed-loop dynamics of a linear time-invariant

system, given matrices A and B in state-space form

Compute the matrix K to place the poles of the closed-loop sys-
tem at specified locations, using characteristic polynomial matching

Apply the pole placement algorithm to determine the feedback matrix K for a
system with A, B in control canonical form, using time-domain specifications

- Full state feedback control 3

• by the end of this module you shall be able to do this

notes

note: the considerations below are the same
for both discrete time and continuous time LTIs

- Full state feedback control 4

• I want to emphasize this important point: the control design approach we’re about to discuss
applies equally well to both discrete time and continuous time linear time-invariant systems.
This is quite powerful because it means once you understand the fundamental concepts, you
can apply them in either domain. Many of you will encounter both types of systems in your
careers, so this unified approach will save you a lot of time and effort.

notes

Control-law design for full-state feedback – assumed structure

ẋ = Ax +Bu C y

−K

xu

u = −Kx = − [K1 . . . Kn]

⎡⎢⎢⎢⎢⎢⎢⎣

x1
...

xn

⎤⎥⎥⎥⎥⎥⎥⎦
(estimating x from the measurements = later on)

- Full state feedback control 5

• Here we’re looking at the fundamental structure of state feedback control. The control input
u is computed as a linear combination of all state variables, with the coefficients stored in
the gain vector K . This is a very powerful control structure because it allows us to influence
the system dynamics in a precise way.

• Notice the negative sign in front of K - this is conventional because we typically want negative
feedback for stability. Think of it as "pushing back" against the system’s natural behavior.

• For now, we’re assuming we have direct access to all state variables. In real-world applications,
this is often not the case, which is why we’ll cover state estimation later in the course. But
first we need to understand what to do with the states once we have them.

notes

Finding the control law

{ ẋ = Ax +Bu
y = Cx

“ + ” u = −Kx

⇓

ẋ = (A −BK)x
y = Cx

Important:

BK =

⎡⎢⎢⎢⎢⎢⎢⎣

b1
...

bn

⎤⎥⎥⎥⎥⎥⎥⎦

[K1 . . . Kn] =

⎡⎢⎢⎢⎢⎢⎢⎣

b1K1 ⋯ b1Kn
...

...

bnK1 ⋯ bnKn

⎤⎥⎥⎥⎥⎥⎥⎦

- Full state feedback control 6

• This is where the magic happens! When we substitute our control law into the original system
dynamics, we get a new closed-loop system with the matrix (A−BK) instead of just A. This
is why state feedback is so powerful - we’re essentially redesigning the system dynamics.

• Pay close attention to the matrix multiplication BK . The dimensions must match correctly:
B is an n ×m matrix and K is m × n, so BK is n × n, which can be subtracted from A.

• Notice that the output equation doesn’t change. This means that what we observe from
outside the system depends on what states we choose to measure (matrix C), and isn’t
directly affected by our controller.

• The key insight here is that by choosing K appropriately, we can change the behavior of the
closed-loop system to achieve our design goals.

notes

Finding the control law – what are the poles now?

ẋ = (A −BK)x
y = Cx

⇒ det (sI − (A −BK)) = 0

choose K so that the closed-loop poles are where we like

Poles allocation algorithm
• from time-domain specifications, numerically determine the n desired poles

p1, . . . , pn

• numerically compute the desired denominator of the closed loop TF as
n
∏
i=1
(s − pi)

• compute det (sI − (A −BK)) as a function of K1, . . . , Kn
• find K1, . . . , Kn by equating the two polynomials

- Full state feedback control 7

• This is the core idea of pole placement: we can choose the poles of our closed-loop system
by selecting the right feedback gains in K . Remember that poles determine the system’s
dynamic behavior - things like stability, settling time, and oscillation characteristics.

• The poles of our closed-loop system are the roots of the characteristic equation shown here.
By changing K , we can change where these poles are located in the complex plane.

• The algorithm I’ve outlined gives us a systematic way to find the right values of K . We
start with the desired performance in the time domain (like settling time or damping ratio),
translate these into desired pole locations, and then solve for the K values that will give us
those poles.

• Step 3 can be challenging for large systems because computing this determinant and extracting
the coefficients as functions of the Ki values gets messy. We’ll see how to address this shortly.

• This is an incredibly powerful feature of state feedback - in fact, if the system is fully con-
trollable, we can place the closed-loop poles anywhere we want!

notes

Example

Close the loop around the open loop system { [ẋ1
ẋ2
] = [1 0

0 −0.5] [
x1
x2
] + [11]u so

that the closed loop is stable and with raise time not longer than 5 seconds

(recall: G(s) = ω2
n

s2 + 2ζωns + ω2
n
→ rise time tr =

1.8
ωn
)

- Full state feedback control 8

• Let’s work through this example step by step. First, notice that the open-loop system has
one unstable pole at s = 1 and one stable pole at s = −0.5. We need to stabilize the system
and ensure a rise time less than 5 seconds.

• We’ll use the relationship between rise time and natural frequency: tr = 1.8/ωn. Since we
want tr < 5, we need ωn > 1.8/5 = 0.36.

• For a good balance between speed and overshoot, let’s choose a damping ratio of ζ = 0.7
(typically a good compromise) and ωn = 0.5 to meet our rise time requirement.

• This gives us desired poles at s = −ζωn ± jωn
√

1 − ζ2 = −0.35 ± j0.357.
• Now we need to find K = [K1, K2] such that the characteristic polynomial of (A − BK) has

these roots. Let’s go through the calculations...
• The closed-loop characteristic polynomial is det(sI − (A−BK)) = (s − 1+K1)(s + 0.5+K2)−

(0 ⋅K2) = s2
+ (K1 +K2 − 0.5)s + (K1K2 + 0.5K1 − 0.5).

• Our desired polynomial is (s − (−0.35 + j0.357))(s − (−0.35 − j0.357)) = s2
+ 0.7s + 0.25.

• Comparing coefficients: K1 + K2 − 0.5 = 0.7 and K1K2 + 0.5K1 − 0.5 = 0.25. Solving these
equations gives us our gain vector K .

notes

Finding the control law – drawback when A has no special structure
Example:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 3 8 3
7 3 9 6 9
9 4 4 1 7
2 2 5 3 6
1 1 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
1
0
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

drawback: doing as before is cumbersome

↓

is there any alternative way of finding K?

- Full state feedback control 9

• Look at this 5x5 matrix A - it has no obvious structure, unlike the diagonal matrix from our
previous example. Imagine trying to compute the characteristic polynomial of (A − BK) by
hand! It would be extremely tedious and error-prone.

• For larger systems like this, the direct approach we used earlier becomes impractical. Com-
puting the determinant of sI − (A − BK) and extracting the coefficients as functions of Ki

would be a nightmare, even with computer assistance.
• This is a common situation in control engineering - the mathematics becomes unwieldy as

system dimensions increase. Fortunately, there are better approaches.
• In the following slides, we’ll see how transforming the system to a canonical form makes this

problem much more manageable. And eventually, we’ll discover Ackermann’s formula, which
gives us a direct way to compute K without all the tedious algebra.

• This is a great example of why understanding mathematical structures and system transfor-
mations is so important in control theory - they often lead to enormous simplifications in
practical problems.

notes

Determinant of a matrix in control canonical form
Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 −an
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then

det (sI −A) = sn + a1sn−1 + . . . + an

- Full state feedback control 10

• This is an extremely useful property of the control canonical form. The structure of this
matrix is special - notice the 1’s along the subdiagonal and the coefficients −ai in the first
row.

• What’s remarkable is that when we compute the characteristic polynomial of this matrix,
the coefficients appear directly in the result. There’s a beautiful one-to-one correspondence
between the matrix elements and the polynomial coefficients.

• You might wonder why this happens. The control canonical form is designed specifically to
have this property. It’s closely related to the companion matrix in linear algebra.

• This property will become very helpful for pole placement, as we’ll see in the next slides.
Instead of messy determinant calculations, we can work directly with the polynomial coeffi-
cients.

• I encourage you to verify this property for a 2x2 or 3x3 case to convince yourself that it
works. It’s not immediately obvious, but once you work through the calculations, you’ll see
how elegantly it all fits together.

notes

Incidentally. . .

Y (s) = b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

U(s)

↦ A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 −an
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦ det (sI −A) = sn + a1sn−1 + . . . + an

- Full state feedback control 11

• Here’s another powerful connection - there’s a direct mapping between a transfer function
representation and the control canonical form. The coefficients in the denominator of the
transfer function become the elements of the first row of the A matrix.

• This gives us a systematic way to go back and forth between transfer function representations
and state-space models in control canonical form. This is incredibly useful in practice.

• Remember that we often obtain system models as transfer functions from frequency response
data or from basic physical principles. This mapping allows us to easily convert such models
to state-space form for control design.

• Think of the control canonical form as a "standard format" for representing dynamics. Just
like you might convert units to a standard system for calculations, we often convert system
representations to canonical forms to simplify analysis and design.

• And as we’ll see next, this particular canonical form makes the pole placement problem much
more tractable.

notes

Finding the control law with (A, B) in control canonical form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ BK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 K2 ⋯ Kn
0 0 ⋯ 0
...

...
...

0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that

A −BK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −K1 −a2 −K2 −an −Kn
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and thus the poles of the closed loop system are the roots of

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)

- Full state feedback control 12

• Now we’re seeing the real power of the control canonical form. When the system is in this
form, the control matrix B has a very simple structure - just a 1 in the first position and zeros
elsewhere.

• This means that BK only affects the first row of the A matrix when we compute A−BK . All
the other rows remain unchanged. This is a huge simplification!

• Look at what happens to the characteristic polynomial: the coefficient of sn−i is simply
ai + Ki . This is remarkably clean and direct - each gain Ki affects exactly one coefficient in
the characteristic polynomial.

• This is what makes pole placement so straightforward in the control canonical form. We
can directly "dial in" the coefficients of our desired characteristic polynomial by choosing the
appropriate gains.

• For instance, if we want the closed-loop polynomial to be sn
+α1sn−1

+ ...+αn, we simply set
Ki = αi − ai for each i . It’s that simple!

notes

Summary (valid also for discrete-time systems!)

(A, B) in control canonical form + K generic
⇓

closed loop is ẋ = (A −BK)x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −K1 −a2 −K2 −an −Kn
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

⇓
poles of the closed loop system = roots of

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)

- Full state feedback control 13

• Let me emphasize an important point here: everything we’ve discussed applies equally well
to discrete-time systems. For a discrete-time system in control canonical form, the pole
placement procedure works exactly the same way - the gain Ki directly affects the coefficient
of zn−i in the characteristic polynomial.

• This is another example of the elegant unification in control theory - many concepts apply
similarly across continuous and discrete domains, especially when working with state-space
representations.

• The closed-loop system maintains the special structure of the control canonical form, just
with modified coefficients in the first row. This is what makes the analysis so clean.

• Looking at these equations, you can see exactly how each feedback gain affects the closed-
loop dynamics. There’s a direct, one-to-one mapping between the gains and the coefficients
of the characteristic polynomial.

• This transparency is why control engineers often convert systems to canonical forms before
design - it makes the relationship between design parameters and system behavior much more
explicit.

notes

Summary of the algorithm for (A, B) in control canonical form
• from time domain specifications, find the desired poles p1, . . . , pn

• form the desired characteristic polynomial

α(s) =
n
∏
i=1
(s − pi) = sn + α1sn−1 + . . . + αn

• find K s.t. det (sI −A +BK) = α(s) by solving

⎡⎢⎢⎢⎢⎢⎢⎣

α1
...

αn

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

a1 +K1
...

an +Kn

⎤⎥⎥⎥⎥⎥⎥⎦

- Full state feedback control 14

• Here’s the complete algorithm for pole placement when working with a system in control
canonical form. The beauty of this approach is its simplicity and directness.

• In step 1, we translate our performance requirements (like settling time, damping ratio, or
bandwidth) into specific pole locations. This is where your understanding of second-order
system dynamics comes into play.

• Step 2 involves multiplying out the factors (s − pi) to get the coefficients αi of the desired
characteristic polynomial. This is just algebra.

• And finally, in step 3, we simply set Ki = αi − ai for each i . This couldn’t be more straight-
forward!

• Compare this to the general case we saw earlier - no messy determinant calculations, no
system of equations to solve. Just a direct computation of the gain vector K .

• Of course, the catch is that our system needs to be in control canonical form. If it’s not
(which is usually the case), we need to transform it first, or use a different approach like
Ackermann’s formula, which we’ll see shortly.

notes

Example

Close the loop around the discrete time open loop system A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
with sampling period 0.2 seconds so that the closed loop raise time is not longer than
10 seconds

(recall: G(s) = ω2
n

s2 + 2ζωns + ω2
n
→ rise time tr =

1.8
ωn

but we need to discretize!)

- Full state feedback control 15

• Let’s work through this discrete-time example. Notice that the system is already in control
canonical form, which is convenient! We can directly apply our algorithm.

• First, we need to translate our continuous-time specifications to the discrete domain. We
want a rise time of no more than 10 seconds with a sampling period of 0.2 seconds.

• From the relationship tr = 1.8/ωn, we need ωn ≥ 1.8/10 = 0.18 rad/s. Let’s choose ωn = 0.2
for simplicity, and a damping ratio of ζ = 0.7 for good behavior.

• These give us continuous-time poles at s = −0.14± j0.143. Now we need to map these to the
z-plane using z = esT with T = 0.2 seconds.

• The discrete poles will be z = e(−0.14±j0.143)⋅0.2
= e−0.028

⋅ e±j0.0286
≈ 0.972∠± 0.0286 rad.

• Our desired characteristic polynomial is therefore α(z) = (z − 0.972ej0.0286
)(z −

0.972e−j0.0286
)(z − 0) (I’ve added a third pole at z=0 for stability).

• Multiplying this out: α(z) = z3
− 1.944z2

+ 0.945z.
• Looking at our A matrix, the open-loop characteristic polynomial is det(zI−A) = z3

−z2
−2z−3.

• Therefore, we need K = [K1, K2, K3] such that a1 + K1 = 1.944, a2 + K2 = −0.945, and
a3 +K3 = 0.

• Since a1 = 1, a2 = 2, and a3 = 3, we get K = [0.944,−2.945,−3].
• Always double-check by computing the eigenvalues of (A − BK) to verify they match our

desired poles!

notes

Test this out: write a K that makes the discrete time open loop system

A = [1 2
1 0] B = [10]

with sampling period 0.5 seconds have a raise time is not longer than 15 seconds.

- Full state feedback control 16

• This is a good exercise to test your understanding. Let me walk you through how I would
approach it:

• First, I need to specify desired pole locations based on the rise time requirement. For rise
time 15 seconds, we need ωn ≥ 1.8/15 = 0.12 rad/s.

• I’ll choose ωn = 0.15 rad/s and ζ = 0.7 for good damping. The continuous-time poles are
s = −0.105 ± j0.107.

• Converting to discrete poles with sampling period T = 0.5 seconds: z = esT
=

e(−0.105±j0.107)⋅0.5
≈ 0.949∠± 0.0535 rad.

• The desired characteristic polynomial is α(z) = (z − 0.949ej0.0535
)(z − 0.949e−j0.0535

) = z2
−

1.898z + 0.9
• The open-loop characteristic polynomial is det(zI −A) = z2

− z − 2.
• So we need K = [K1, K2] such that a1 +K1 = 1.898 and a2 +K2 = −0.9.
• Since a1 = 1 and a2 = −2, we get K = [0.898, 1.1].
• I encourage you to verify this works by calculating the eigenvalues of (A−BK) and checking

if they match our desired poles!
• This example shows how straightforward pole placement becomes when using the control

canonical form. You simply identify the desired polynomial coefficients and adjust the gains
accordingly.

notes

Fundamental difference with PIDs

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)

state-feedback in fully controllable systems allows al-
locating all the closed loop poles wherever one wants

- Full state feedback control 17

• This is a crucial advantage of state feedback over PID control. With PID, you’re limited to
adjusting just three parameters (Kp, Ki , Kd) regardless of the system order.

• State feedback gives you as many "knobs to turn" as you have states, allowing you to shape
the entire closed-loop dynamics precisely.

• Think about it: for an nth-order system, PID gives you 3 parameters to adjust, while state
feedback gives you n parameters. This extra flexibility is why state feedback can achieve
better performance for complex systems.

• However, with great power comes great responsibility! You need to choose all these gains
carefully. Poor pole placement can lead to excessive control effort or sensitivity to noise.

• Also remember that state feedback requires access to all state variables, which often isn’t
practical. That’s why we’ll later combine it with state estimators.
item PID controllers are still incredibly useful for many applications - they’re simple, robust,
and often "good enough." But for systems where you need precise control over all dynamics,
state feedback is the way to go.

notes

Caveats
• weak controllability
• the more you move poles, the more you use actuators (risk of saturations!)
• effect of zeros

- Full state feedback control 18

• While pole placement is powerful, there are several important practical limitations to keep in
mind:

• 1) Weak controllability: If the system is barely controllable (i.e., the controllability matrix
is nearly singular), small errors in your model or implementation can make the actual pole
locations very different from what you designed.

• 2) Control effort: Aggressive pole placement (fast poles) typically requires large control sig-
nals. Your actuators have physical limits - if you demand too much, they’ll saturate and your
system may become unstable.

• 3) Zeros: Remember that pole placement only affects the poles of the closed-loop system.
The zeros remain unchanged and can significantly affect the response, especially for non-
minimum phase systems.

• Other practical considerations include:
• - Sensitivity to noise (high gains amplify measurement noise)
• - Robustness to modeling errors
• - Computational limitations in implementation
• Always perform thorough simulations testing different scenarios before implementing your

controller in the real world!

notes

Do we actually need to compute the control canonical form?

no, there exists the so-called Ackermann’s formula

K = [0 . . . 0 1]C−1α(A)

we will though do not cover it - will be in follow up courses!

- Full state feedback control 19

• Here’s a powerful alternative to transformation to control canonical form: Ackermann’s for-
mula gives us the gain matrix K directly.

• The formula might look intimidating at first, but it is actually something that has a precise
intuitive physical meaning (if one has been studying systems theory :))

• it won’t be asked at the exam

notes

But how do we select the locations of the poles?
Strategies:

• in this course, dominant second-order poles approximations

• in follow up courses, very many other ones!

- Full state feedback control 20

• this is not a trivial topic: one shall do courses just to learn this!
• for the exam we will go through just dominant poles approximations

notes

Summarizing

Formulate a state feedback control law u = −Kx to
modify the closed-loop dynamics of a linear time-invariant

system, given matrices A and B in state-space form

Compute the matrix K to place the poles of the closed-loop sys-
tem at specified locations, using characteristic polynomial matching

Apply the pole placement algorithm to determine the feedback matrix K for a
system with A, B in control canonical form, using time-domain specifications

- Full state feedback control 21

• we saw a bit of formulas and concepts about how to do this

notes

Most important python code for this sub-module

- Full state feedback control 1

•

notes

control (Python Control Systems Library)
main functions:

• acker (Ackermann’s method)
• place (robust pole placement)

- Full state feedback control 2

• read the documentation :)

notes

Question 1

What is the primary advantage of state feedback control with pole placement
compared to PID control?

Potential answers:

I: (wrong) PID control is always more stable than state feedback.
II: (correct) State feedback allows arbitrary placement of all closed-loop

poles when the system is fully controllable.
III: (wrong) State feedback does not require knowledge of the system’s state

variables.
IV: (wrong) PID control can achieve faster response times than state feed-

back.
V: (wrong) I do not know

Solution 1:

The correct answer is that state feedback allows arbitrary placement of all closed-
loop poles when the system is fully controllable. This is a fundamental advantage
over PID control, which doesn’t offer direct control over all poles of the system.
The other options are incorrect: PID isn’t inherently more stable, state feedback
does require state knowledge, and state feedback can achieve any desired response
time (within physical limits) through pole placement.

- Full state feedback control 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 2

Why is the control canonical form particularly useful for pole placement problems?

Potential answers:

I: (wrong) It makes the system matrix A diagonal.
II: (wrong) It eliminates all zeros from the transfer function.

III: (correct) The coefficients of the characteristic polynomial appear directly
in the first row of A.

IV: (wrong) It guarantees that the system will be observable.
V: (wrong) I do not know

Solution 1:

The correct answer is that in control canonical form, the coefficients of the char-
acteristic polynomial appear directly in the first row of A. This makes pole place-
ment straightforward since modifying these coefficients through state feedback
directly affects the closed-loop poles. The other options are incorrect: control
canonical form doesn’t diagonalize A, doesn’t affect zeros, and observability isn’t
guaranteed by this form.

- Full state feedback control 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

What is a major practical limitation of aggressive pole placement through state
feedback?

Potential answers:

I: (wrong) It makes the system uncontrollable.
II: (correct) It may require large control inputs that could lead to actuator

saturation.
III: (wrong) It always makes the system unstable.
IV: (wrong) It prevents the use of output feedback.
V: (wrong) I do not know

Solution 1:

The correct answer is that aggressive pole placement may require large control
inputs that could lead to actuator saturation. While pole placement theoretically
allows arbitrary pole locations, practical limitations include actuator limits. The
other options are incorrect: pole placement doesn’t make the system uncontrol-
lable, doesn’t always cause instability, and doesn’t prevent output feedback.

- Full state feedback control 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 4

When designing state feedback control, why might we choose poles with dominant
second-order characteristics?

Potential answers:

I: (wrong) Because higher-order systems cannot be controlled effectively.
II: (wrong) Because it eliminates all zeros from the system.

III: (correct) Because it allows us to approximate the response using familiar
second-order performance measures.

IV: (wrong) Because it guarantees minimum-phase behavior.
V: (wrong) I do not know

Solution 1:

The correct answer is that choosing poles with dominant second-order character-
istics allows us to approximate the response using familiar second-order perfor-
mance measures (like rise time, overshoot, etc.). The other options are incorrect:
higher-order systems can be controlled, zeros aren’t affected by pole placement,
and minimum-phase behavior isn’t guaranteed by this approach.

- Full state feedback control 6

• see the associated solution(s), if compiled with that ones :)

notes

Recap of sub-module “Full state feedback control”
• full state feedback enables placing the poles wherever one wants
• with respect to PID it has more flexibility
• this comes with the cost of having a sufficiently accurate model (and that the

model can be written in control canonical form, something that is not always
guaranteed!)

- Full state feedback control 7

• the most important remarks from this sub-module are these ones

notes

	Full state feedback control

