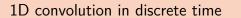
Table of Contents I • 1D convolution in discrete time

- Most important python code for this sub-module
- Self-assessment material

• this is the table of contents of this document; each section corresponds to a specific part of the course

- 1

- 1D convolution in discrete time 1

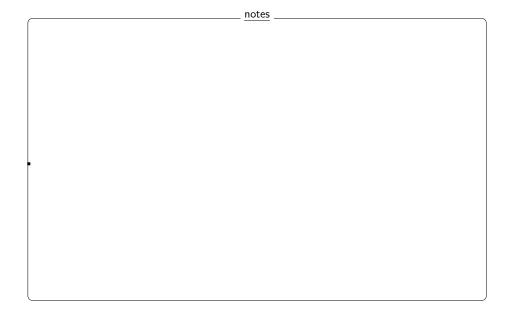


notes

Contents map

developed content units	taxonomy levels
convolution	u1, e1

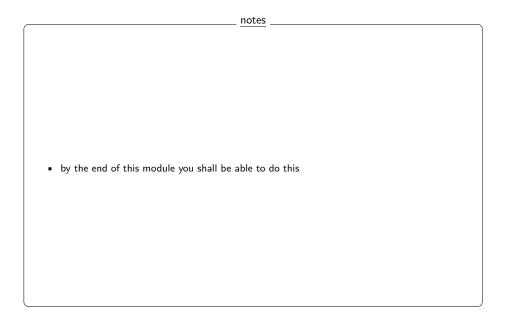
prerequisite content units	taxonomy levels
signal	u1, e1



- 1D convolution in discrete time 2

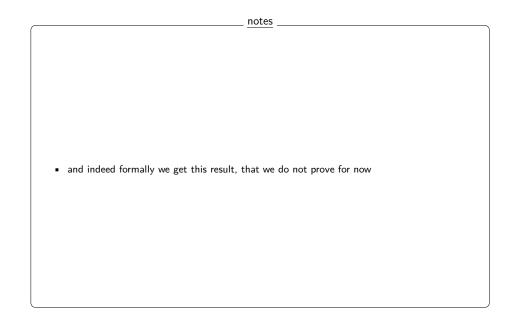
Main ILO of sub-module <u>"1D convolution in discrete time"</u>

Compute the convolution between two single dimensional discrete time signals



Why convolution?

because for a LTI system with impulse response h[k]it follows that $y_{\text{forced}}[k] = u * h[k]$



- 1D convolution in discrete time 4

extremely important result for LTI systems: $y_{\text{forced}}[k] = h * u[k] = u * h[k] :=$ $:= \sum_{\kappa=-\infty}^{+\infty} u[\kappa]h[k-\kappa] = \sum_{-\infty}^{+\infty} h[\kappa]u[k-\kappa]$

 \ldots and this module = what that formula actually means from graphical perspectives



Additional material

Videos:

- https://www.youtube.com/watch?v=KuXjwB4LzSA
- https://www.youtube.com/watch?v=acAw5WGtzuk
- https://www.youtube.com/watch?v=IaSGqQa50-M (for connections with probability)
- https://www.youtube.com/playlist?list= PL4iThgVpN7hmbIhHnCa7SDO0gLMoNwED_
- https://www.youtube.com/playlist?list= PL4mJLdGEHNvhCuPXsKFrnD7AaQB1MEB6a

Animations:

- https://lpsa.swarthmore.edu/Convolution/CI.html
- https://phiresky.github.io/convolution-demo/

- 1D convolution in discrete time $\boldsymbol{6}$

• the world is full of material on convolution - check also this stuff and not only what we do in class

Towards decomposing this formula in pieces

$$y_{\text{forced}}[k] = h * u[k] = \sum_{-\infty}^{+\infty} u[\kappa] h[k-\kappa] = \sum_{-\infty}^{+\infty} h[\kappa] u[k-\kappa]$$

better focus on

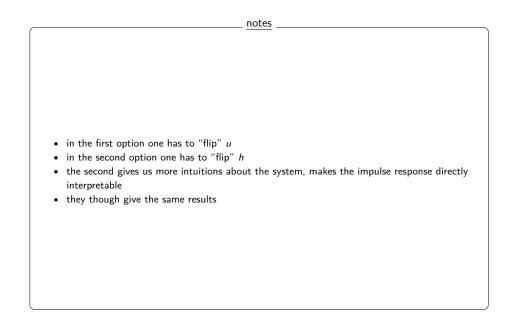
$$\sum_{-\infty}^{+\infty} u[\kappa] h[k-\kappa]$$

or on

$$\sum_{-\infty}^{+\infty} h[\kappa] u[k-\kappa]$$

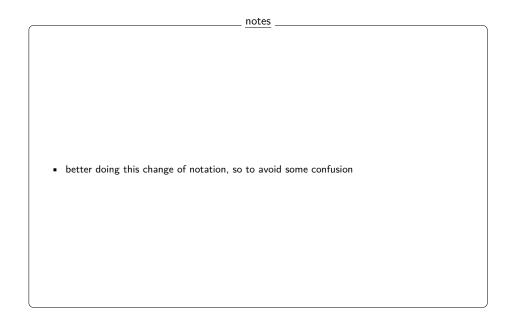
?

in automatic control typically better the second



Towards decomposing this formula in pieces, small change of notation

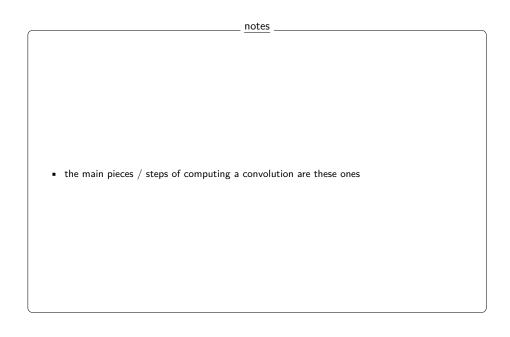
$$y_{\text{forced}}[k] = \sum_{-\infty}^{+\infty} h[\kappa] u[k-\kappa] \quad \mapsto \quad y_{\text{forced}}[\text{now}] = \sum_{-\infty}^{+\infty} h[\kappa] u[\text{now}-\kappa]$$

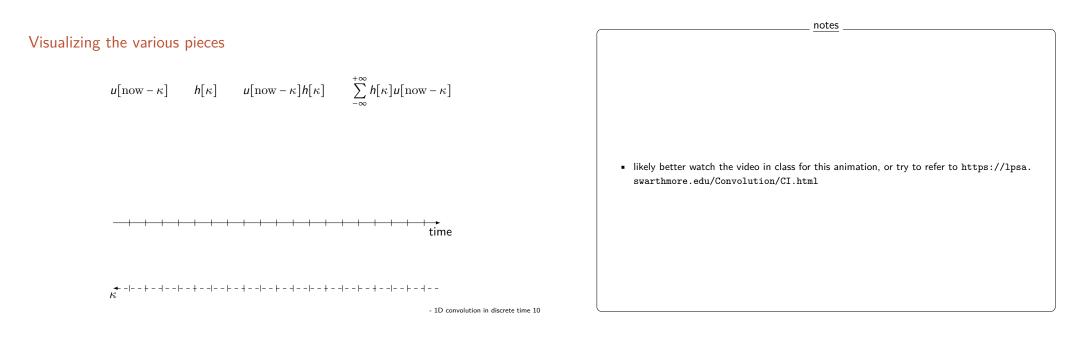


Decomposing this formula in pieces

$$y_{\text{forced}}[\text{now}] = \sum_{-\infty}^{+\infty} h[\kappa] u[\text{now} - \kappa]$$

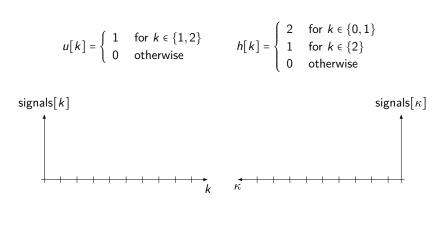
- \implies constituent pieces =
- $u[\text{now} \kappa]$
- h[κ]
- $u[\text{now} \kappa]h[\kappa]$
- $\sum u[\text{now} \kappa]h[\kappa]$

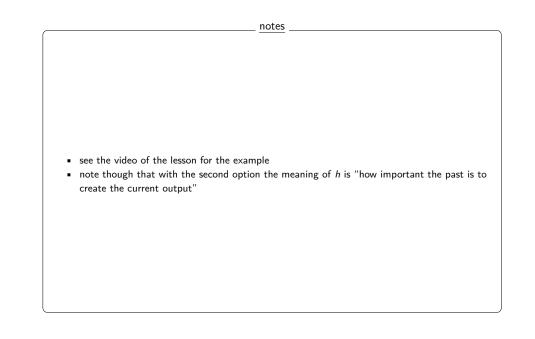




- 1D convolution in discrete time 11

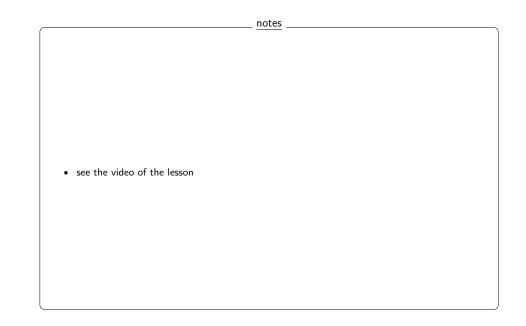
Example





Another Example:

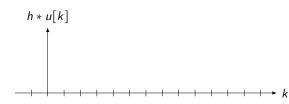
$$u[k] = \begin{cases} 1 & \text{for } k \in \{0, 1, 3\} \\ 0 & \text{otherwise} \end{cases} \quad h[k] = \begin{cases} 2 & \text{for } k \in \{0, 1, 2\} \\ 0 & \text{otherwise} \end{cases}$$
?

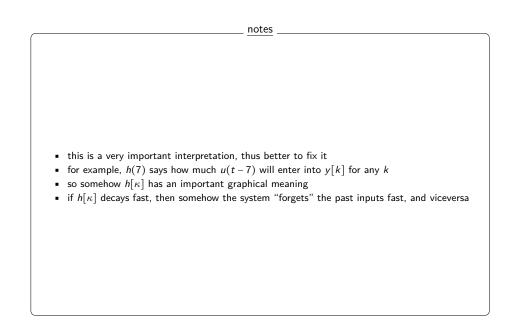


- 1D convolution in discrete time 12

- 1D convolution in discrete time 13

h in $y_{\text{forced}}[k] = \sum_{-\infty}^{+\infty} h[\kappa] u[k - \kappa]$ represents how much the past *u*'s contribute to the current y_{forced} :





Refreshing what we are doing and why

Dynamics of a cart: $v[k+1] = \alpha v[k] + \beta F[k]$ with:

- **control input:** u[k] (actuation from the motor, in this case = F[k])
- system output: y[k] (cart velocity, in this case = v[k])
- impulse response: h[k] (output corresponding to the input δ[k] assuming y[0] = 0)
- free evolution: y_{free}[k] (output in time corresponding to no input, i.e., u[k] = 0, and initial condition y[0] whatever it is)
- forced response: y_{forced}[k] = u * h[k] (output in time corresponding to null initial condition, i.e., y[0] = 0, and input u[k] whatever it is)
- total response: $y[k] = y_{\text{free}}[k] + y_{\text{forced}}[k]$

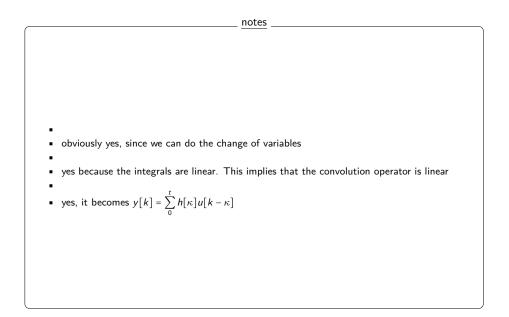
- 1D convolution in discrete time 14

- just to be sure: what we are doing here is essential
- we want to understand how to map the input into the output
- if we want to do model predictive control indeed we need to know what a certain input is going to cause to the output

Quiz time!

$$h \star u[k] \coloneqq \sum_{-\infty}^{+\infty} h[\kappa] u[k - \kappa]$$

- is h * u[k] = u * h[k]?
- is $(\alpha h_1 + \beta h_2) * u[k] = \alpha (h_1 * u[k]) + \beta (h_2 * u[k])?$
- if both $h[\kappa] = 0$ and u[k] = 0 if t < 0, how can we simplify $y[k] = \sum_{-\infty}^{+\infty} h[\kappa]u[k-\kappa]$?



Summarizing

Compute the convolution between two single dimensional continuous time signals

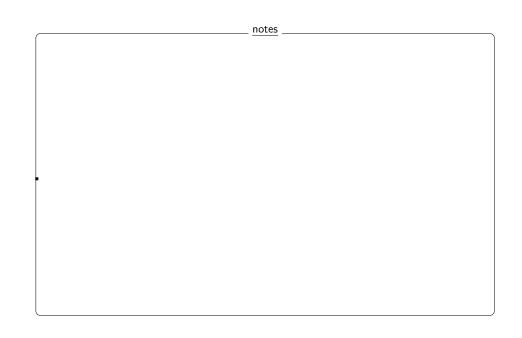
- take one of the two signals
- translate it to the "current k"
- flip it
- multiply the two signals in a pointwise fashion
- compute the discrete integral of the result

notes _

• you should now be able to do this, following the pseudo-algorithm in the itemized list

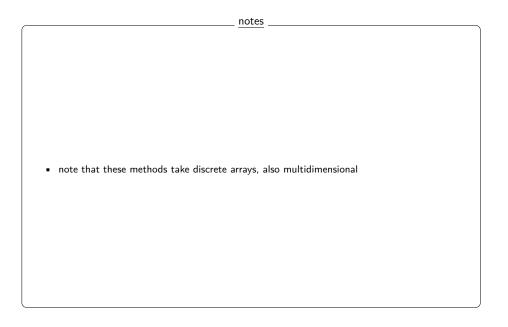
- 1D convolution in discrete time 16

Most important python code for this sub-module



Methods implementing (discrete) convolutions

- https://numpy.org/doc/2.1/reference/generated/numpy.convolve.html
- https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.convolve.html



notes

- 1D convolution in discrete time 2

Question 1

What does the convolution integral $y_{\text{forced}}[k] = \sum_{-\infty}^{+\infty} h[\kappa]u[k-\kappa]$ represent in the context of LTI systems?

Potential answers:

I: (wrong)	The free evolution of the system output.
II: (correct)	The forced response of the system output due to the input
u[k].	
III: (wrong)	The total response of the system, including initial conditions.
IV: (wrong)	The impulse response of the system.
V: (wrong)	I do not know.

Solution 1:

- 1D convolution in discrete time 2 The convolution integral $y_{\text{forced}}[k] = \sum_{-\infty}^{+\infty} h[\kappa] u[k - \kappa]$ represents the forced response of the system output due to the input u[k]. It describes how the system responds to the input when initial conditions are zero.

Question 2

Which of the following is true about the convolution operation h * u[k]?

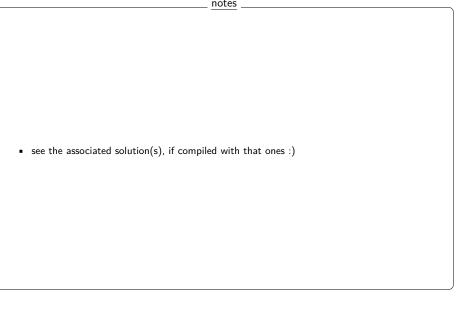
Potential answers:

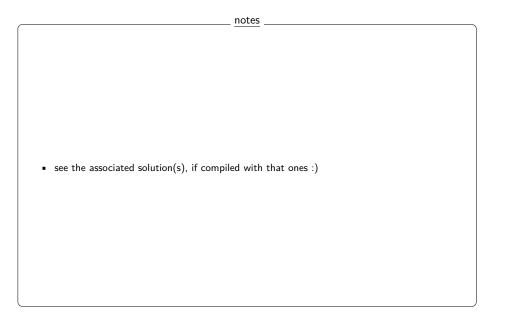
I: (wrong)	It is only defined for periodic signals.
II: (wrong)	It is only applicable to discrete-time systems.
III: (correct)	It is commutative, i.e., $h * u[k] = u * h[k]$.
IV: (wrong)	It requires both signals to be symmetric.
V: (wrong)	l do not know.

Solution 1:

The convolution operation is commutative, meaning h * u[k] = u * h[k]. This property holds for continuous-time signals in LTI systems.

- 1D convolution in discrete time 3





notes

Question 3

What does the impulse response h[k] of an LTI system represent?

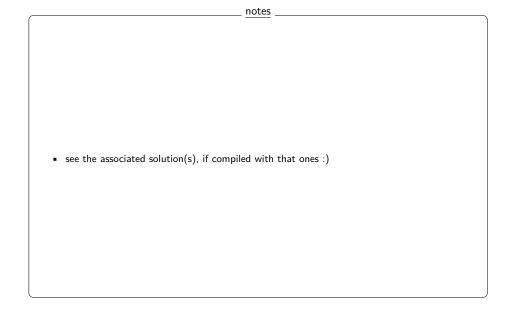
Potential answers:

I: (wrong)	The input signal $u[k]$ applied to the system.
II: (wrong)	The free evolution of the system output.
III: (wrong)	The total response of the system, including initial conditions.
IV: (correct)	The output of the system when the input is a Dirac delta
function $\delta[$	k].
V: (wrong)	l do not know.

Solution 1:

The impulse response h[k] represents the output of the system when the input is a Dirac delta function $\delta[k]$. It characterizes the system's behavior. 1D convolution in discrete time 4

- 1D convolution in discrete time 5



Question 4

If $h[\kappa] = 0$ for $\kappa < 0$ and u[k] = 0 for t < 0, how can the convolution integral $y[k] = \sum_{-\infty}^{+\infty} h[\kappa]u[k - \kappa]$ be simplified?

Potential answers:

I: (correct)
$$y[k] = \sum_{0}^{t} h[\kappa]u[k-\kappa]$$

II: (wrong) $y[k] = \sum_{0}^{+\infty} h[\kappa]u[k-\kappa]$
III: (wrong) $y[k] = \sum_{-\infty}^{+\infty} h[\kappa]u[\kappa]$
IV: (wrong) $y[k] = \sum_{-\infty}^{0} h[\kappa]u[k-\kappa]$
V: (wrong) I do not know.

see the associated solution(s), if compiled with that ones :)

notes

Question 5

What is the graphical interpretation of $h[\kappa]$ in the convolution integral $y_{\text{forced}}[k] = \sum_{-\infty}^{+\infty} h[\kappa]u[k-\kappa]?$

Potential answers:

It represents the future inputs of the system.
It represents how much past inputs contribute to the current
It represents the free evolution of the system.
It represents the total energy of the system.
I do not know.

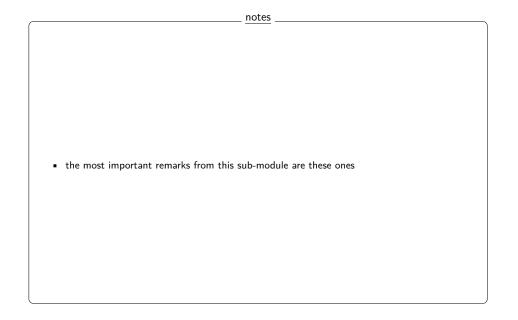
Solution 1:

- 1D convolution in discrete time 6

The term $h[\kappa]$ in the convolution integral represents how much past inputs $u[k - \kappa]$ contribute to the current output y[k]. This is a key interpretation in LTI systems.

Recap of sub-module "1D convolution in discrete time"

- convolution is an essential operator, since it can be used for LTI systems to compute forced responses
- its graphical interpretation aids interpreting impulse responses as how the past inputs contribute to current outputs



___ <u>notes</u>

• see the associated solution(s), if compiled with that ones :)