Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- 1

- Table of Contents I

 state space from ARMA (and viceversa)
 - From state space to ARMA
 - From ARMA to SS
 - Most important python code for this sub-module
 - Self-assessment material

n	notes
 this is the table of contents of this docum 	nent; each section corresponds to a specific part of
the course	

state space from ARMA (and viceversa)

- state space from ARMA (and viceversa) 1

Contents map

developed content units	taxonomy levels
realization	u1, e1

prerequisite content units	taxonomy levels
ARMA model	u1, e1
state space model model	u1, e1
matrix inversion	u1, e1
Laplace transforms	u1, e1

Main ILO of sub-module "state space from ARMA (and viceversa)"

Determine the state space structure of an LTI system starting from an ARMA ODE

- state space from ARMA (and viceversa) 3

ARMA models

$$y^{(n)} = a_{n-1}y^{(n-1)} + \ldots + a_0y + b_mu^{(m)} + \ldots + b_0u$$

notes

 by the end of this module you shall be able to do this

- the $a_{n-1}y^{(n-1)} + \ldots + a_0y$ part is called Auto-Regressive the $b_mu^{(m)} + \ldots + b_0u$ part is called Moving-Average
- these names make more sense in discrete time systems of the type $y(k+n) = a_{n-1}y(k+n)$ $1)+\ldots+a_0y(k)+b_mu^{\prime}k+m)+\ldots+b_0u(k)$ and k a discrete time index. Here we see that the a's correspond to an autoregression, and the b's to the coefficients of a moving average. In any case we use ARMA for both continuous and discrete dynamics of these types

State space representations - Notation

$$\dot{x}_1 = f_1(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$\vdots$$

$$\dot{x}_n = f_n(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$y_1 = g_1(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$\vdots$$

$$y_p = g_p(x_1, \dots, x_n, u_1, \dots, u_m)$$

$$\dot{x} = f(x, u)$$

$$y = g(x, u)$$

- f = state transition map
- **g** = output map

- state space from ARMA (and viceversa) 5

This module:

But why do we study this?

because from physical laws we get ARMA, but with state space we get more explainable models

- we will learn how to do two simple operations
- we will only scratch the surface though, there is a lot of material to cover here and you will do it much better in other modules / courses
- and often one does the "ARMA to SS" operation

From state space to ARMA

state space from ARMA (and viceversa) 1

SS to ARMA

Tacit assumption: x(0) = 0

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \rightarrow \mathcal{L} \left\{ \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \right\}$$

$$\Rightarrow \begin{cases} sX = AX + BU \\ Y = CX + DU \end{cases}$$

$$\Rightarrow \begin{cases} (sI - A)X = BU \\ Y = CX + DU \end{cases}$$

$$\Rightarrow \begin{cases} X = (sI - A)^{-1}BU \\ Y = CX + DU \end{cases}$$

$$\Rightarrow Y = \left(C(sI - A)^{-1}B + D \right)U$$

$$\Rightarrow Y(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s} U(s)$$

$$\Rightarrow \text{state space from ARMA (and viceversa) } 2$$

- This slide shows the step-by-step derivation of the transfer function from the state-space representation using Laplace transforms.
- the assumption x(0) = 0 simplifies the Laplace transform of the derivative.
- the key step where $X = (sI A)^{-1}BU$ is derived is the foundation for the transfer function. the final result, $Y(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s}U(s)$, is the ARMA representation of the system.
- For computations, I recommend using tools like simpy for symbolic algebra, but you should be able to handle 2x2 systems by hand.

A note on the last formula

$$Y(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s} U(s) \mapsto ARMA:$$

$$Y(s) = \frac{s+3}{2s^3+3s}U(s) \quad \mapsto \quad 2\ddot{y}+3\dot{y}=\dot{u}+3u$$

- state space from ARMA (and viceversa) 3

A note on the second to last formula

$$Y = \left(C(sI - A)^{-1}B + D\right)U$$

DISCLAIMER: in this course we consider SISO systems, thus C and B = vectors, and D = scalar (if present)

_ notes

- This slide connects the transfer function to the ARMA model in the time domain.
- the numerator and denominator polynomials in *s* directly translate to differential equations in the time domain.
- the example shows how the transfer function $Y(s) = \frac{s+3}{2s^3+3s}U(s)$ corresponds to the differential equation $2\ddot{y} + 3\dot{y} = \dot{u} + 3u$.
- this is a key step in understanding the relationship between the Laplace domain and time domain.

- that this course focuses on Single Input Single Output (SISO) systems, which simplifies the matrices C, B, and D.
- C and B are vectors, and D is a scalar (often zero in many systems).
- this simplification is important for understanding the structure of the transfer function.
- MIMO (Multiple Input Multiple Output) systems in other courses!

Numerical Example: 2 × 2 State-Space to ARMA

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

- state space from ARMA (and viceversa) 5

Numerical Example: 2 × 2 State-Space to ARMA

Step 1: State-Space Equations

$$\begin{cases} \dot{x}_1 = x_1 + 2x_2 + u \\ \dot{x}_2 = 3x_1 + 4x_2 \\ y = x_1 \end{cases}$$

<u>notes</u>	
this according to according to the state of the second section of the sect	
 this numerical example is used to illustrate the conversion from state-space to ARMA this is a 2x2 system, which is manageable by hand and helps students understand the relationship. 	

• the matrices A, B, C, and D are chosen for simplicity, but the method is general.

- the state-space equations explicitly using the given matrices.
- \dot{x}_1 and \dot{x}_2 are linear combinations of the states and the input u.
- the output y is simply the first state variable x₁.

Numerical Example: 2 × 2 State-Space to ARMA

Step 2: Laplace Transform

$$\begin{cases} sX_1(s) = X_1(s) + 2X_2(s) + U(s) \\ sX_2(s) = 3X_1(s) + 4X_2(s) \\ Y(s) = X_1(s) \end{cases}$$

- state space from ARMA (and viceversa) 7

Numerical Example: 2 × 2 State-Space to ARMA

Step 3: Rearrange in Matrix Form

$$\begin{cases} (sI - A)X(s) = BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

implies

$$\begin{cases} \begin{bmatrix} s-1 & -2 \\ -3 & s-4 \end{bmatrix} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(s) \\ Y(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} \end{cases}$$

Apply the Laplace transform to the state-space equations, assuming zero initial conditions.
the Laplace transform converts differential equations into algebraic equations in s.
Y(s) = X₁(s), which connects the output directly to the first state variable.

- Rearrange the Laplace-transformed equations into matrix form.
- the output equation Y(s) = CX(s) remains simple due to the choice of C.

Numerical Example: 2 × 2 State-Space to ARMA

Step 4: Solve for X(s)

$$X(s) = (sI - A)^{-1}BU(s)$$
$$(sI - A) = \begin{bmatrix} s - 1 & -2 \\ -3 & s - 4 \end{bmatrix}$$

$$(sI - A)^{-1} = \frac{1}{(s-1)(s-4) - (-2)(-3)} \begin{bmatrix} s-4 & 2\\ 3 & s-1 \end{bmatrix}$$

$$\det(sI - A) = (s - 1)(s - 4) - 6 = s^2 - 5s - 2$$

$$(sI - A)^{-1} = \frac{1}{s^2 - 5s - 2} \begin{bmatrix} s - 4 & 2\\ 3 & s - 1 \end{bmatrix}$$

- state space from ARMA (and viceversa) 9

notes

- Solve for X(s) by computing $(sI A)^{-1}$.
- the determinant det(sI A), which appears in the denominator of the transfer function, is key.
- the step-by-step computation of the inverse matrix is assumed as a given skill.

notes

- Multiply $(sI A)^{-1}$ by B to obtain X(s).
- this step simplifies the expression for X(s).
- $X_1(s)$ and $X_2(s)$ are now expressed in terms of U(s).

Numerical Example: 2 × 2 State-Space to ARMA

Step 5: Multiply by B

Now, multiply by B:

$$X(s) = \frac{1}{s^2 - 5s - 2} \begin{bmatrix} s - 4 & 2 \\ 3 & s - 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(s) = \frac{1}{s^2 - 5s - 2} \begin{bmatrix} s - 4 \\ 3 \end{bmatrix} U(s)$$

Substitute X(s) into the output equation:

$$Y(s) = CX(s) + DU(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = X_1(s)$$

Thus:

Step 7: Final Result

Transfer function H(s):

$$Y(s) = \frac{s-4}{s^2 - 5s - 2}U(s)$$

- state space from ARMA (and viceversa) 11

notes

- Substitute X(s) into the output equation to find Y(s).
- Y(s) is directly proportional to $X_1(s)$.

notes

• this is the ARMA representation of the system.

$H(s) = \frac{Y(s)}{U(s)} = \frac{s-4}{s^2 - 5s - 2}$

Numerical Example: 2 × 2 State-Space to ARMA

and from this we get the ARMA representation of the system as before

- state space from ARMA (and viceversa) 1

notes

Starting point (blending Laplace notation with time notation)

$$y(t) = \frac{b(s)}{a(s)}u(t) = \frac{b_1s^{n-1} + \ldots + b_n}{s^n + a_1s^{n-1} + \ldots + a_n}u(t)$$

- our goal is now that of converting an ARMA model to a state-space representation.
- the starting point is the transfer function in the Laplace domain.
- the numerator and denominator polynomials define the ARMA model.

Building block = the integrator (block)

- state space from ARMA (and viceversa) 3

How do we use integrators?

$$\ddot{y} + a_1 \ddot{y} + a_2 \dot{y} + a_3 y = b_1 u$$

$$\downarrow$$

$$\ddot{y} = -a_1 \ddot{y} - a_2 \dot{y} - a_3 y + b_1 u$$

notes

- the integrator block is a fundamental building block for state-space representations.
- the integrator relates to differentiation and integration in the time domain.
- the integrator is key to constructing state variables.

- This shows how to rearrange a higher-order differential equation into a form suitable for statespace representation.
- the highest derivative is expressed as a function of lower derivatives and the input.
- this step is crucial for defining the state variables.

Towards SS with a useful trick

$$y(t) = \frac{b(s)}{a(s)}u(t) = \frac{b_1s^{n-1} + \dots + b_n}{s^n + a_1s^{n-1} + \dots + a_n}u(t) \to \begin{cases} x_n(t) = \frac{1}{a(s)}u(t) \\ y(t) = b(s)x_n(t) \end{cases}$$

- state space from ARMA (and viceversa) 5

This is an AR model on x_n

$$x_n(t) = \frac{1}{a(s)}u(t) \implies a(s)x_n(t) = u(t)$$

implies

$$x_{n} = \frac{1}{s} x_{n-1} \rightarrow x_{n-1} = s x_{n} \rightarrow \begin{cases} x_{n-1} = s x_{n} \\ x_{n-2} = s^{2} x_{n} \\ \vdots \\ x_{2} = s^{n-2} x_{n} \\ x_{1} = s^{n-1} x_{n} \end{cases}$$

notes

- We then use the trick of defining an intermediate variable $x_n(t)$ to simplify the conversion process.
- $x_n(t)$ is the output of the denominator dynamics driven by the input u(t).
- this trick separates the AR (denominator) and MA (numerator) parts of the system.

- The intermediate variable $x_n(t)$ leads to the definition of state variables x_1, x_2, \dots, x_n .
- each state variable is a scaled version of the next, with the scaling factor being s.
- this step defines the state vector x.

This is an AR model on x_n

$$x_n(t) = \frac{1}{a(s)}u(t) \implies a(s)x_n(t) = u(t)$$

implies

- state space from ARMA (and viceversa) 7

notes

- We now use a block diagram to illustrate the relationship between the state variables.
- the state variables are interconnected through integrators.
- this structure is the foundation of the state-space representation.

Completing the picture (a MA from x_n to y)

- state space from ARMA (and viceversa) 8

- the output y(t) is constructed as a linear combination of the state variables.
- the coefficients of the linear combination are the numerator coefficients b_1, b_2, \ldots, b_n .
- this step completes the state-space representation.

From concepts to formulas

$$\begin{cases} y(t) = b_1 x_1(t) + \ldots + b_n x_n(t) \\ \dot{x}_1(t) = -a_1 x_1(t) - \ldots - a_n x_n(t) + u(t) \rightarrow \begin{cases} \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} \\ y = C\mathbf{x} + D\mathbf{u} \end{cases} \end{cases}$$

$$\dot{\mathbf{x}} := \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -a_1 & -a_2 & \dots & \dots & -a_n \\ 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ & & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

- state space from ARMA (and viceversa) 9

notes

- This presents the final state-space equations in matrix form.
- the structure of the A matrix is then in control canonical form.
- the B vector has a single non-zero entry, corresponding to the input u(t).

And y?

$$\begin{cases} y(t) = b_1 x_1(t) + \dots + b_n x_n(t) \\ \dot{x}_1(t) = -a_1 x_1(t) - \dots - a_n x_n(t) + u(t) \rightarrow \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \\ \dot{x}_i(t) = x_{i-1}(t) \end{cases}$$

$$y = \begin{bmatrix} b_1 & b_2 & b_3 & \dots & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

- The output equation is constructed from the state variables.
- the C matrix contains the numerator coefficients b_1, b_2, \ldots, b_n .
- this step completes the state-space representation.

From ARMA to state space (in Control Canonical Form)

$$\begin{cases}
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_n \\ 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ & & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} b_1 & b_2 & b_3 & \dots & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

- state space from ARMA (and viceversa) 11

Matlab / Python implementation

notes

- The state-space representation in control canonical form.
- the structure of the A matrix becomes upper Hessenberg with a diagonal of ones.
- this form is particularly useful for control design and analysis, you will see it very often.

- the MATLAB/Python function tf2ss is used for converting transfer functions to state-space form.
- the input arguments are the numerator and denominator coefficients of the transfer function.
- this function automates the process of deriving the state-space matrices.
- you can use this function to verify your hand calculations only for small examples, at work don't do computations by hand

Summarizing

Determine the state space structure of an LTI system starting from an ARMA ODE

- there are some formulas, that you may simply know by heart, or that you may want to understand
- for understanding there is the need to get how the transformations work, and what is what
- likely the most important point is that to go from ARMA to SS the (likely) most simple strategy is to build the states as a chain of integrators, and ladder on top of that

- state space from ARMA (and viceversa) 13

Most important python code for this sub-module

- state space from ARMA (and viceversa) 1

notes
 you should now be able to do this, following the pseudo-algorithm in the itemized list

<u>notes</u>

These functions have also their opposite, i.e., tf2ss https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.ss2tf.html https://python-control.readthedocs.io/en/latest/generated/ control.ss2tf.html • in the references you will see much more information than what is given in this module - state space from ARMA (and viceversa) 2 Self-assessment material

- state space from ARMA (and viceversa) 1

Question 1

What is the role of $(sI - A)^{-1}$ in the derivation of the transfer function from a state-space model?

Potential answers:

I: **(wrong)** It represents the output matrix *C*.

II: $(\underline{\text{correct}})$ It is used to solve for the state vector X(s) in the Laplace domain.

III: (wrong) It defines the input matrix B.

IV: (wrong) It is the Laplace transform of the state transition matrix.

V: (wrong) I do not know

Solution 1:

 $(sI-A)^{-1}$ is used to solve for the state vector X(s) in the Lapkacesedofma in MA tend viceversa) 2 allows us to express X(s) in terms of the input U(s), which is then used to derive the transfer function.

Question 2

What is the structure of the A matrix in the control canonical form of a state-space model?

Potential answers:

I: (correct) An upper Hessenberg matrix with a lower diagonal of ones and coefficients on the first row from the denominator polynomial.

II: (wrong) A diagonal matrix with the eigenvalues of the system.

III: (wrong) A lower triangular matrix with zeros on the diagonal.

IV: (wrong) A symmetric matrix with off-diagonal elements equal to zero.

V: (wrong) I do not know

Solution 1:

The A matrix in control canonical form is an upper Hessenberg and a_{tabe} with $a_{\text{and viceversa}}$ lower diagonal of ones and coefficients from the denominator polynomial. This structure is particularly useful for control design and analysis.

Question 3

What is the purpose of the integrator block in the conversion from ARMA to state-space models?

Potential answers:

I: **(wrong)** To differentiate the input signal.

II: (wrong) To invert the Laplace transform of the output.

III: (correct) To construct the state variables as a chain of scaled integrators.

IV: (wrong) To compute the determinant of the state matrix.

V: (wrong) I do not know

Solution 1:

The integrator block is used to construct the state variables as a chain of scaled integrators. This allows us to define the state vector \mathbf{x} and build the state vector \mathbf{x} and build the state vector \mathbf{x} are presentation.

Question 4

What does the transfer function $H(s) = \frac{Y(s)}{U(s)}$ represent in the context of state-space models?

Potential answers:

I: (wrong) The state transition matrix.

II: (wrong) The input matrix B.

III: (wrong) The determinant of the state matrix.

IV: (correct) The relationship between the input U(s) and the output Y(s) in the Laplace domain.

V: (wrong) I do not know

Solution 1:

The transfer function $H(s) = \frac{Y(s)}{U(s)}$ represents the relationship between the input U(s) and the output Y(s) in the Laplace domain. It is derived from the statespace model and encapsulates the system's dynamics.

 $\, \bullet \,$ see the associated solution(s), if compiled with that ones :)

Question 5

In the context of SISO systems, what are the dimensions of the matrices ${\it C}$ and ${\it B}$ in a state space representation?

Potential answers:

I: **(wrong)** *C* is a scalar, and *B* is a vector.

II: (correct) C is a row vector, and B is a column vector.

III: (wrong) C is a square matrix, and B is a scalar.

IV: (wrong) C is a column vector, and B is a row vector.

V: (wrong) I do not know

Solution 1:

In SISO systems, C is a row vector $(1 \times n)$, and B is a column vector $(n \times 1)$. This is because C maps the state vector to the output, and B maps the input or the viceversa) G state vector.

notes

• see the associated solution(s), if compiled with that ones :)

Question 6

Given the state-space matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, and $D = \begin{bmatrix} 0 \end{bmatrix}$, what is the transfer function H(s)?

Potential answers:

1: (correct)
$$H(s) = \frac{s-4}{s^2 - 5s - 2}$$

II: (wrong)
$$H(s) = \frac{s-1}{s^2-5s-2}$$

III: (wrong)
$$H(s) = \frac{s+3}{s^2-5s-5}$$

IV: (wrong)
$$H(s) = \frac{s-2}{s^2 - 5s - 2}$$

V: (wrong) I do not know

Solution 1:

- state space from ARMA (and viceversa) 7

The transfer function is $H(s) = \frac{s-4}{s^2-5s-2}$. This is derived by solving the state-

notos

• see the associated solution(s), if compiled with that ones :)

Recap of sub-module "state space from ARMA (and viceversa)"

- one can go from ARMA to state space and viceversa
- we did not see this, but watch out that the two representations are not equivalent: there are systems that one can represent with state space and not with ARMA, and viceversa
- typically state space is more interpretable, and tends to be the structure used when doing model predictive control

 the most important remarks from this sub-module are these ones 	

notes

- state space from ARMA (and viceversa) 8