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• welcome to the course!
• on this side of this document you will find notes that accompany the text typically visualized

in class
• these notes are meant to convey the messages that are not displayed in the text on the side,

and basically constitute what the teacher intends to say in class

notes

Table of Contents I
state space from ARMA (and viceversa)

From state space to ARMA
From ARMA to SS
Most important python code for this sub-module
Self-assessment material
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• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes



state space from ARMA (and viceversa)
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•

notes

Contents map

developed content units taxonomy levels
realization u1, e1

prerequisite content units taxonomy levels
ARMA model u1, e1
state space model model u1, e1
matrix inversion u1, e1
Laplace transforms u1, e1
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•

notes



Main ILO of sub-module “state space from ARMA (and viceversa)”

Determine the state space structure of an
LTI system starting from an ARMA ODE
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• by the end of this module you shall be able to do this

notes

ARMA models

y (n) = an−1y (n−1) + . . . + a0y + bmu(m) + . . . + b0u
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• the an−1y (n−1)
+ . . . + a0y part is called Auto-Regressive

• the bmu(m) + . . . + b0u part is called Moving-Average
• these names make more sense in discrete time systems of the type y(k + n) = an−1y(k + n −

1) + . . . + a0y(k) + bmu(k +m) + . . . + b0u(k) and k a discrete time index. Here we see that
the a’s correspond to an autoregression, and the b’s to the coefficients of a moving average.
In any case we use ARMA for both continuous and discrete dynamics of these types

notes



State space representations - Notation

ẋ1 = f1 ( x1, . . . , xn, u1, . . . , um )
...

ẋn = fn ( x1, . . . , xn, u1, . . . , um )

y1 = g1 ( x1, . . . , xn, u1, . . . , um )
...

yp = gp ( x1, . . . , xn, u1, . . . , um )

ẋ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map
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• notation wide, remember that state space means first order ODEs
• they will thus look like these ones, in general
• we can also compress the notation in this way
• remember that bold non-capital fonts mean vectors in this course
• and we give to the various things these names

notes

This module:

ARMA models state space models

But why do we study this?
because from physical laws we get ARMA,
but with state space we get more explainable models
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• we will learn how to do two simple operations
• we will only scratch the surface though, there is a lot of material to cover here and you will

do it much better in other modules / courses
• and often one does the “ARMA to SS” operation

notes



From state space to ARMA
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•

notes

SS to ARMA
Tacit assumption: x(0) = 0

{ ẋ = Ax +Bu
y = Cx +Du

→ L({ ẋ = Ax +Bu
y = Cx +Du

)

→ { sX = AX +BU
Y = CX +DU

→ { (sI −A)X = BU
Y = CX +DU

→ { X = (sI −A)−1BU (∗)
Y = CX +DU

⇒ Y = (C(sI −A)−1B +D)U

⇒ Y (s) = polynomial in s
polynomial in s

U(s)
- state space from ARMA (and viceversa) 2

• This slide shows the step-by-step derivation of the transfer function from the state-space
representation using Laplace transforms.

• the assumption x(0) = 0 simplifies the Laplace transform of the derivative.
• the key step where X = (sI −A)−1BU is derived is the foundation for the transfer function.
• the final result, Y (s) = polynomial in s

polynomial in s
U(s), is the ARMA representation of the system.

• For computations, I recommend using tools like simpy for symbolic algebra, but you should
be able to handle 2x2 systems by hand.

notes



A note on the last formula

Y (s) = polynomial in s
polynomial in s

U(s) ↦ ARMA:

Y (s) = s + 3
2s3 + 3s

U(s) ↦ 2˙̇ ˙y + 3ẏ = u̇ + 3u
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• This slide connects the transfer function to the ARMA model in the time domain.
• the numerator and denominator polynomials in s directly translate to differential equations

in the time domain.
• the example shows how the transfer function Y (s) = s + 3

2s3 + 3s
U(s) corresponds to the differ-

ential equation 2˙̇ ˙y + 3ẏ = u̇ + 3u.
• this is a key step in understanding the relationship between the Laplace domain and time

domain.

notes

A note on the second to last formula

Y = (C(sI −A)−1B +D)U

DISCLAIMER: in this course we consider SISO systems, thus C and B = vectors, and
D = scalar (if present)
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• that this course focuses on Single Input Single Output (SISO) systems, which simplifies the
matrices C , B, and D.

• C and B are vectors, and D is a scalar (often zero in many systems).
• this simplification is important for understanding the structure of the transfer function.
• MIMO (Multiple Input Multiple Output) systems in other courses!

notes



Numerical Example: 2 × 2 State-Space to ARMA

A = [1 2
3 4] , B = [10] , C = [1 0] , D = [0]
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• this numerical example is used to illustrate the conversion from state-space to ARMA.
• this is a 2x2 system, which is manageable by hand and helps students understand the process.
• the matrices A, B, C , and D are chosen for simplicity, but the method is general.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 1: State-Space Equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = x1 + 2x2 + u
ẋ2 = 3x1 + 4x2

y = x1
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• the state-space equations explicitly using the given matrices.
• ẋ1 and ẋ2 are linear combinations of the states and the input u.
• the output y is simply the first state variable x1.

notes



Numerical Example: 2 × 2 State-Space to ARMA
Step 2: Laplace Transform

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sX1(s) = X1(s) + 2X2(s) +U(s)
sX2(s) = 3X1(s) + 4X2(s)
Y (s) = X1(s)

- state space from ARMA (and viceversa) 7

• Apply the Laplace transform to the state-space equations, assuming zero initial conditions.
• the Laplace transform converts differential equations into algebraic equations in s.
• Y (s) = X1(s), which connects the output directly to the first state variable.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 3: Rearrange in Matrix Form

⎧⎪⎪⎨⎪⎪⎩

(sI −A)X(s) = BU(s)
Y (s) = CX(s) +DU(s)

implies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

s − 1 −2
−3 s − 4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

X1(s)
X2(s)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1
0

⎤⎥⎥⎥⎥⎦
U(s)

Y (s) = [1 0]
⎡⎢⎢⎢⎢⎣

X1(s)
X2(s)

⎤⎥⎥⎥⎥⎦
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• Rearrange the Laplace-transformed equations into matrix form.
• the output equation Y (s) = CX(s) remains simple due to the choice of C .

notes



Numerical Example: 2 × 2 State-Space to ARMA
Step 4: Solve for X(s)

X(s) = (sI −A)−1BU(s)

(sI −A) = [s − 1 −2
−3 s − 4]

(sI −A)−1 = 1
(s − 1)(s − 4) − (−2)(−3) [

s − 4 2
3 s − 1]

det(sI −A) = (s − 1)(s − 4) − 6 = s2 − 5s − 2

(sI −A)−1 = 1
s2 − 5s − 2 [

s − 4 2
3 s − 1]
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• Solve for X(s) by computing (sI −A)−1.
• the determinant det(sI −A), which appears in the denominator of the transfer function, is

key.
• the step-by-step computation of the inverse matrix is assumed as a given skill.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 5: Multiply by B

Now, multiply by B:

X(s) = 1
s2 − 5s − 2 [

s − 4 2
3 s − 1] [

1
0]U(s) = 1

s2 − 5s − 2 [
s − 4

3 ]U(s)

- state space from ARMA (and viceversa) 10

• Multiply (sI −A)−1 by B to obtain X(s).
• this step simplifies the expression for X(s).
• X1(s) and X2(s) are now expressed in terms of U(s).

notes



Numerical Example: 2 × 2 State-Space to ARMA
Step 6: Solve for Y (s)

Substitute X(s) into the output equation:

Y (s) = CX(s) +DU(s) = [1 0] [X1(s)
X2(s)

] = X1(s)

Thus:
Y (s) = s − 4

s2 − 5s − 2U(s)
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• Substitute X(s) into the output equation to find Y (s).
• Y (s) is directly proportional to X1(s).

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 7: Final Result

Transfer function H(s):
H(s) = Y (s)

U(s) =
s − 4

s2 − 5s − 2
and from this we get the ARMA representation of the system as before
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• this is the ARMA representation of the system.

notes



From ARMA to SS
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•

notes

Starting point (blending Laplace notation with time notation)

y(t) = b(s)
a(s)u(t) =

b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

u(t)
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• our goal is now that of converting an ARMA model to a state-space representation.
• the starting point is the transfer function in the Laplace domain.
• the numerator and denominator polynomials define the ARMA model.

notes



Building block = the integrator (block)

y 1
s ∫

t

−∞

ydt

ẏ 1
s

y

sY
1
s Y
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• the integrator block is a fundamental building block for state-space representations.
• the integrator relates to differentiation and integration in the time domain.
• the integrator is key to constructing state variables.

notes

How do we use integrators?

˙̇ ˙y + a1ÿ + a2ẏ + a3y = b1u
↓

˙̇ ˙y = −a1ÿ − a2ẏ − a3y + b1u
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• This shows how to rearrange a higher-order differential equation into a form suitable for state-
space representation.

• the highest derivative is expressed as a function of lower derivatives and the input.
• this step is crucial for defining the state variables.

notes



Towards SS with a useful trick

y(t) = b(s)
a(s)u(t) =

b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

u(t) →
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn(t) =
1

a(s)u(t)

y(t) = b(s)xn(t)
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• We then use the trick of defining an intermediate variable xn(t) to simplify the conversion
process.

• xn(t) is the output of the denominator dynamics driven by the input u(t).
• this trick separates the AR (denominator) and MA (numerator) parts of the system.

notes

This is an AR model on xn

xn(t) =
1

a(s)u(t) Ô⇒ a(s)xn(t) = u(t)

implies

xn =
1
s

xn−1 → xn−1 = sxn →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn−1 = sxn
xn−2 = s2xn
...

x2 = sn−2xn
x1 = sn−1xn
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• The intermediate variable xn(t) leads to the definition of state variables x1, x2, . . . , xn.
• each state variable is a scaled version of the next, with the scaling factor being s.
• this step defines the state vector x.

notes



This is an AR model on xn

xn(t) =
1

a(s)u(t) Ô⇒ a(s)xn(t) = u(t)

implies

u + 1
s

1
s

. . . 1
s

1
s

xn
x1 x2 xn−2 xn−1

+
+
...

+
+
+

a1

a2

an−2

an−1

an
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• We now use a block diagram to illustrate the relationship between the state variables.
• the state variables are interconnected through integrators.
• this structure is the foundation of the state-space representation.

notes

Completing the picture (a MA from xn to y)

y(t) = b(s)xn(t) = b1x1(t) + . . . + bnxn(t)

u + 1
s

1
s

. . . 1
s

1
s

bn + y
x1 x2 xn−2 xn−1 xn

+
+
⋅

+
+
+

a1

a2

an−2

an−1

an

+

+
⋅

+

+b1

b2

bn−2

bn−1
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• the output y(t) is constructed as a linear combination of the state variables.
• the coefficients of the linear combination are the numerator coefficients b1, b2, . . . , bn.
• this step completes the state-space representation.

notes



From concepts to formulas

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(t) = b1x1(t) + . . . + bnxn(t)

ẋ1(t) = −a1x1(t) − . . . − anxn(t) + u(t)

ẋi(t) = xi−1(t)

→ { ẋ = Ax +Bu
y = Cx +Du

ẋ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
...

ẋn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u
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• This presents the final state-space equations in matrix form.
• the structure of the A matrix is then in control canonical form.
• the B vector has a single non-zero entry, corresponding to the input u(t).

notes

And y?

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(t) = b1x1(t) + . . . + bnxn(t)

ẋ1(t) = −a1x1(t) − . . . − anxn(t) + u(t)

ẋi(t) = xi−1(t)

→ { ẋ = Ax +Bu
y = Cx +Du

y = [b1 b2 b3 . . . bn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• The output equation is constructed from the state variables.
• the C matrix contains the numerator coefficients b1, b2, . . . , bn.
• this step completes the state-space representation.

notes



From ARMA to state space (in Control Canonical Form)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
...

ẋn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

y = [b1 b2 b3 . . . bn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• The state-space representation in control canonical form.
• the structure of the A matrix becomes upper Hessenberg with a diagonal of ones.
• this form is particularly useful for control design and analysis, you will see it very often.

notes

Matlab / Python implementation

[A, B, C, D] = tf2ss([b1 b2 .. bn], [1 a1 a2 .. an])

- state space from ARMA (and viceversa) 12

• the MATLAB/Python function tf2ss is used for converting transfer functions to state-space
form.

• the input arguments are the numerator and denominator coefficients of the transfer function.
• this function automates the process of deriving the state-space matrices.
• you can use this function to verify your hand calculations only for small examples, at work

don’t do computations by hand

notes



Summarizing

Determine the state space structure of an
LTI system starting from an ARMA ODE

• there are some formulas, that you may simply know by heart, or that you may
want to understand

• for understanding there is the need to get how the transformations work, and
what is what

• likely the most important point is that to go from ARMA to SS the (likely) most
simple strategy is to build the states as a chain of integrators, and ladder on top
of that

- state space from ARMA (and viceversa) 13

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module
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•

notes



These functions have also their opposite, i.e., tf2ss
• https://docs.scipy.org/doc/scipy/reference/generated/scipy.

signal.ss2tf.html
• https://python-control.readthedocs.io/en/latest/generated/

control.ss2tf.html
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• in the references you will see much more information than what is given in this module

notes

Self-assessment material

- state space from ARMA (and viceversa) 1

•

notes

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html
https://python-control.readthedocs.io/en/latest/generated/control.ss2tf.html
https://python-control.readthedocs.io/en/latest/generated/control.ss2tf.html


Question 1

What is the role of (sI −A)−1 in the derivation of the transfer function from a
state-space model?

Potential answers:

I: (wrong) It represents the output matrix C .
II: (correct) It is used to solve for the state vector X(s) in the Laplace

domain.
III: (wrong) It defines the input matrix B.
IV: (wrong) It is the Laplace transform of the state transition matrix.
V: (wrong) I do not know

Solution 1:

(sI − A)−1 is used to solve for the state vector X(s) in the Laplace domain. It
allows us to express X(s) in terms of the input U(s), which is then used to derive
the transfer function.
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• see the associated solution(s), if compiled with that ones :)

notes

Question 2

What is the structure of the A matrix in the control canonical form of a state-space
model?

Potential answers:

I: (correct) An upper Hessenberg matrix with a lower diagonal of ones and
coefficients on the first row from the denominator polynomial.

II: (wrong) A diagonal matrix with the eigenvalues of the system.
III: (wrong) A lower triangular matrix with zeros on the diagonal.
IV: (wrong) A symmetric matrix with off-diagonal elements equal to zero.
V: (wrong) I do not know

Solution 1:

The A matrix in control canonical form is an upper Hessenberg matrix with a
lower diagonal of ones and coefficients from the denominator polynomial. This
structure is particularly useful for control design and analysis.

- state space from ARMA (and viceversa) 3

• see the associated solution(s), if compiled with that ones :)

notes



Question 3

What is the purpose of the integrator block in the conversion from ARMA to
state-space models?

Potential answers:

I: (wrong) To differentiate the input signal.
II: (wrong) To invert the Laplace transform of the output.

III: (correct) To construct the state variables as a chain of scaled integrators.
IV: (wrong) To compute the determinant of the state matrix.
V: (wrong) I do not know

Solution 1:

The integrator block is used to construct the state variables as a chain of scaled
integrators. This allows us to define the state vector x and build the state-space
representation.
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• see the associated solution(s), if compiled with that ones :)

notes

Question 4

What does the transfer function H(s) = Y (s)
U(s) represent in the context of state-space

models?

Potential answers:

I: (wrong) The state transition matrix.
II: (wrong) The input matrix B.

III: (wrong) The determinant of the state matrix.
IV: (correct) The relationship between the input U(s) and the output Y (s)

in the Laplace domain.
V: (wrong) I do not know

Solution 1:

The transfer function H(s) = Y (s)
U(s) represents the relationship between the input

U(s) and the output Y (s) in the Laplace domain. It is derived from the state-
space model and encapsulates the system’s dynamics.
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• see the associated solution(s), if compiled with that ones :)

notes



Question 5

In the context of SISO systems, what are the dimensions of the matrices C and B in a
state space representation?

Potential answers:

I: (wrong) C is a scalar, and B is a vector.
II: (correct) C is a row vector, and B is a column vector.

III: (wrong) C is a square matrix, and B is a scalar.
IV: (wrong) C is a column vector, and B is a row vector.
V: (wrong) I do not know

Solution 1:

In SISO systems, C is a row vector (1xn), and B is a column vector (nx1). This
is because C maps the state vector to the output, and B maps the input to the
state vector.
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• see the associated solution(s), if compiled with that ones :)

notes

Question 6

Given the state-space matrices A = [1 2
3 4], B = [10], C = [1 0], and D = [0], what is

the transfer function H(s)?

Potential answers:

I: (correct) H(s) = s − 4
s2 − 5s − 2

II: (wrong) H(s) = s − 1
s2 − 5s − 2

III: (wrong) H(s) = s + 3
s2 − 5s − 2

IV: (wrong) H(s) = s − 2
s2 − 5s − 2

V: (wrong) I do not know

Solution 1:

The transfer function is H(s) = s − 4
s2 − 5s − 2. This is derived by solving the state-

space equations and computing (sI −A)−1B, followed by multiplying by C .
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• see the associated solution(s), if compiled with that ones :)

notes



Recap of sub-module “state space from ARMA (and viceversa)”
• one can go from ARMA to state space and viceversa
• we did not see this, but watch out that the two representations are not equivalent:

there are systems that one can represent with state space and not with ARMA,
and viceversa

• typically state space is more interpretable, and tends to be the structure used
when doing model predictive control
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• the most important remarks from this sub-module are these ones

notes
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