

#### Contents map

| developed content units | taxonomy levels |
|-------------------------|-----------------|
| free evolution          | u1, e1          |
| forced response         | u1, e1          |

| prerequisite content units     | taxonomy levels |
|--------------------------------|-----------------|
| LTI ODE                        | u1, e1          |
| convolution                    | u1, e1          |
| partial fraction decomposition | u1, e1          |

## Main ILO of sub-module "computing free evolutions and forced responses of LTI systems"

**Compute** free evolutions and forced responses of LTI systems using Laplace-based formulas (but only as procedural tools)

#### Disclaimer

the formulas introduced in this module shall be taken as "ex machina"

#### Focus in this module = on ARMA models

$$y^{(n)} = a_{n-1}y^{(n-1)} + \ldots + a_0y + b_mu^{(m)} + \ldots + b_0u$$

with (i) meaning the i-th time derivative.

#### Focus in this module = on ARMA models

$$y^{(n)} = a_{n-1}y^{(n-1)} + \ldots + a_0y + b_mu^{(m)} + \ldots + b_0u$$

with (i) meaning the i-th time derivative. *Discussion:* why is the LHS  $y^{(n)}$  and not  $a_n y^{(n)}$ ?

#### Focus in this module = on ARMA models

$$y^{(n)} = a_{n-1}y^{(n-1)} + \ldots + a_0y + b_mu^{(m)} + \ldots + b_0u$$

with  $^{(i)}$  meaning the i-th time derivative. *Discussion:* why is the LHS  $y^{(n)}$  and not  $a_n y^{(n)}$ ? *Discussion:* and which initial conditions shall we consider?

#### Laplace transforms - links for who would like to get more info about them

Laplace transforms = extension of Fourier transforms; interesting material:

- https://www.youtube.com/watch?v=r6sGWTCMz2k (Fourier series)
- https://www.youtube.com/watch?v=spUNpyF58BY (Fourier transforms)
- https://www.youtube.com/watch?v=nmgFG7PUHfo (on the historical importance of Fast Fourier Transforms)
- https://www.youtube.com/watch?v=7UvtU75NXTg (Laplace Transforms, in math)
- https://www.youtube.com/watch?v=n2y7n6jw5d0 (Laplace Transforms, graphically)

# Main usefulness: convolution in time transforms into multiplication in Laplace-domain, and viceversa

$$\begin{cases} H(s) = \mathcal{L}\{h(t)\} \\ U(s) = \mathcal{L}\{u(t)\} \end{cases} \implies \mathcal{L}\{h * u(t)\} = H(s)U(s)$$

# Main usefulness: convolution in time transforms into multiplication in Laplace-domain, and viceversa

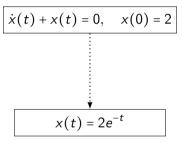
$$\begin{cases} H(s) = \mathcal{L}\{h(t)\} \\ U(s) = \mathcal{L}\{u(t)\} \end{cases} \implies \mathcal{L}\{h * u(t)\} = H(s)U(s)$$

Noticeable name:  $transfer\ function\ (=H(s)=\mathcal{L}\ \{impulse\ response\})$ 

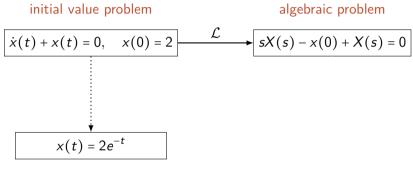
initial value problem

$$\dot{x}(t) + x(t) = 0, \quad x(0) = 2$$

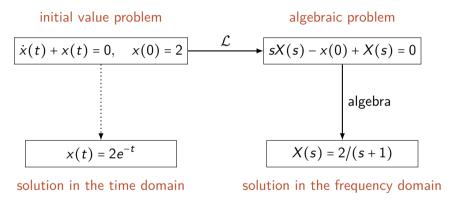
initial value problem

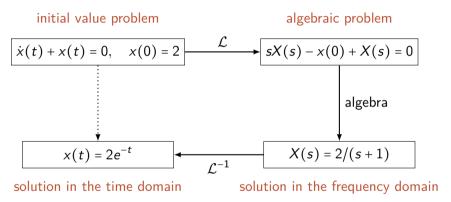


solution in the time domain



solution in the time domain





(these will be motivated in other courses)

$$\mathcal{L}\left\{\dot{x}\right\} = sX(s) - x(0)$$

(these will be motivated in other courses)

$$\mathcal{L}\left\{\dot{x}\right\} = sX(s) - x(0)$$

$$\mathcal{L}\left\{\ddot{x}\right\} = s^2 X(s) - s x(0) - \dot{x}(0)$$

(these will be motivated in other courses)

$$\mathcal{L}\left\{\dot{x}\right\} = sX(s) - x(0)$$

$$\mathcal{L}\left\{\ddot{x}\right\} = s^2 X(s) - s x(0) - \dot{x}(0)$$

$$\mathcal{L}\left\{\ddot{x}\right\} = s^3 X(s) - s^2 x(0) - s\dot{x}(0) - \ddot{x}(0)$$

(these will be motivated in other courses)

$$\mathcal{L}\left\{\dot{x}\right\} = sX(s) - x(0)$$

$$\mathcal{L}\left\{\ddot{x}\right\} = s^2X(s) - sx(0) - \dot{x}(0)$$

$$\mathcal{L}\left\{\ddot{x}\right\} = s^3X(s) - s^2x(0) - s\dot{x}(0) - \ddot{x}(0)$$

 $\mathcal{L}\left\{x^{m}\right\} = \dots$ 

#### Example: spring mass system

#### And what shall we do once we get this?

generalizing the previous slide: 
$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}U(s)$$

with

- $\frac{M(s)}{A(s)}$  = Laplace transform of the free evolution
- $\frac{B(s)}{A(s)}U(s)$  = Laplace transform of the forced response

⇒ we shall anti-transform; how?

#### And what shall we do once we get this?

generalizing the previous slide: 
$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}U(s)$$

with

- $\frac{M(s)}{A(s)}$  = Laplace transform of the free evolution
- $\frac{B(s)}{A(s)}U(s)$  = Laplace transform of the forced response

⇒ we shall anti-transform; how? Main 2 cases:

- either  $U(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s}$
- or U(s) = something else

#### Question 1

Is the Laplace transform of the signal

$$h(t) = \begin{cases} \frac{1}{t+1} & \text{if } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

a rational Laplace transform?

#### **Potential answers:**

I: yes

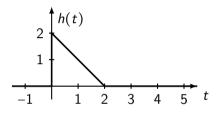
II: no

III: it depends

IV: I don't know

#### Question 2

Is the Laplace transform of the signal h(t) below a rational Laplace transform?



#### **Potential answers:**

I: yes

II: no

III: it depends

IV: I don't know

first case: rational U(s)

How to do if  $U(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s}$ 

$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}U(s) \quad \mapsto \quad Y(s) = \frac{M(s)}{A(s)} + \frac{C(s)}{D(s)}$$

How to do if  $U(s) = \frac{\text{polynomial in } s}{\text{polynomial in } s}$ 

$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}U(s) \quad \mapsto \quad Y(s) = \frac{M(s)}{A(s)} + \frac{C(s)}{D(s)}$$

write each of the two parts of the signal as

$$\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots}$$

#### Next step: partial fraction decomposition

■ case single poles: if  $\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots}$  is s.t.  $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$  then there exist  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ , ... s.t.

$$\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots} = \frac{\alpha_1}{s-\lambda_1} + \frac{\alpha_2}{s-\lambda_2} + \frac{\alpha_3}{s-\lambda_3} + \cdots$$
 (1)

#### Next step: partial fraction decomposition

**case single poles:** if  $\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots}$  is s.t.  $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$  then there exist  $\alpha_1, \alpha_2, \alpha_3, \ldots$  s.t.

$$\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots} = \frac{\alpha_1}{s-\lambda_1} + \frac{\alpha_2}{s-\lambda_2} + \frac{\alpha_3}{s-\lambda_3} + \cdots$$
 (1)

**case repeated poles:** if some poles are repeated, then there exist  $\alpha_{1,1}, \ldots, \alpha_{1,n_1}, \alpha_{2,1}, \ldots, \alpha_{2,n_2}, \ldots, s.t.$ 

$$\frac{N(s)}{(s-\lambda_1)^{n1}(s-\lambda_2)^{n2}\cdots} = \frac{\alpha_{1,1}}{s-\lambda_1} + \cdots + \frac{\alpha_{1,n1}}{(s-\lambda_1)^{n1}} + \frac{\alpha_{2,1}}{s-\lambda_2} + \cdots + \frac{\alpha_{2,n2}}{(s-\lambda_2)^{n2}} + \cdots$$
(2)

(2)

#### Next step: partial fraction decomposition

■ case single poles: if  $\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots}$  is s.t.  $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$  then there exist  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ , ... s.t.

$$\frac{N(s)}{(s-\lambda_1)(s-\lambda_2)(s-\lambda_3)\cdots} = \frac{\alpha_1}{s-\lambda_1} + \frac{\alpha_2}{s-\lambda_2} + \frac{\alpha_3}{s-\lambda_3} + \cdots$$
 (1)

• case repeated poles: if some poles are repeated, then there exist  $\alpha_{1,1}, \ldots, \alpha_{1,n1}, \alpha_{2,1}, \ldots, \alpha_{2,n2}, \ldots$ , s.t.

$$\frac{N(s)}{(s-\lambda_1)^{n1}(s-\lambda_2)^{n2}\cdots} = \frac{\alpha_{1,1}}{s-\lambda_1} + \cdots + \frac{\alpha_{1,n1}}{(s-\lambda_1)^{n1}} + \frac{\alpha_{2,1}}{s-\lambda_2} + \cdots + \frac{\alpha_{2,n2}}{(s-\lambda_2)^{n2}} + \cdots$$
(2)

"But how do I compute  $\alpha_1$ ,  $\alpha_2$ , etc.?"  $\rightarrow$ 

en.wikipedia.org/wiki/Partial\_fraction\_decomposition
(tip: start from en.wikipedia.org/wiki/Heaviside cover-up method)

### Anti-transforming in the rational U(s) case

if 
$$Y(s) = \frac{\alpha_{1,1}}{s - \lambda_1} + \ldots + \frac{\alpha_{1,n1}}{(s - \lambda_1)^{n1}} + \frac{\alpha_{2,1}}{s - \lambda_2} + \ldots + \frac{\alpha_{2,n2}}{(s - \lambda_2)^{n2}} + \ldots$$
 then use 
$$\mathcal{L}\left\{t^n e^{\lambda t}\right\} = \frac{n!}{(s - \lambda)^{n+1}} \quad \leftrightarrow \quad \mathcal{L}^{-1}\left\{\frac{n!}{(s - \lambda)^{n+1}}\right\} = t^n e^{\lambda t}$$

#### Numerical Example: Inverse Laplace Transform of a Rational Function

$$Y(s) = \frac{3}{s-2} + \frac{4}{(s-2)^2} + \frac{5}{s+1}$$

goal = compute the inverse Laplace transform  $y(t) = \mathcal{L}^{-1} \{Y(s)\}$ 

#### Step 1: Identify the terms

$$Y(s) = \frac{3}{s-2} + \frac{4}{(s-2)^2} + \frac{5}{s+1}$$

Here:

- $\lambda_1$  = 2, with coefficients  $\alpha_{1,1}$  = 3 and  $\alpha_{1,2}$  = 4
- $\lambda_2 = -1$ , with coefficient  $\alpha_{2,1} = 5$

### Step 2: Apply the inverse Laplace transform formula

by means of

$$\mathcal{L}^{-1}\left\{\frac{n!}{(s-\lambda)^{n+1}}\right\} = t^n e^{\lambda t}$$

we compute the inverse Laplace transform of each term:

$$\mathcal{L}^{-1}\left\{\frac{3}{s-2}\right\} = 3e^{2t}$$

• 
$$\mathcal{L}^{-1}\left\{\frac{3}{(s-2)^2}\right\} = 4te^{2t}$$

$$\mathcal{L}^{-1}\left\{\frac{5}{s+1}\right\} = 5e^{-t}$$

#### Step 3: Combine the results

then we have that the inverse Laplace transform y(t) is the sum of the individual transforms, i.e.,

$$y(t) = 3e^{2t} + 4te^{2t} + 5e^{-t}$$

### Another Example: Inverse Laplace Transform with Complex Conjugate Terms

let

$$Y(s) = \frac{2s+3}{s^2 + 2s + 5}$$

and the goal to be to compute the inverse Laplace transform  $y(t) = \mathcal{L}^{-1}\{Y(s)\}$ 

# Step 1: Factor the denominator

note:  $s^2 + 2s + 5$  has complex conjugate roots, indeed

$$s^2 + 2s + 5 = (s+1)^2 + 4$$

and thus

$$Y(s) = \frac{2s+3}{(s+1)^2+4}$$

# Step 2: Express in terms of standard forms

rewrite Y(s) to match the standard forms for inverse Laplace transforms involving complex conjugates, i.e.,

$$Y(s) = \frac{2(s+1)+1}{(s+1)^2+4} = 2 \cdot \frac{s+1}{(s+1)^2+4} + \frac{1}{(s+1)^2+4}.$$

# Step 3: Apply the inverse Laplace transform formula

since

$$\mathcal{L}^{-1}\left\{\frac{s+a}{(s+a)^2+b^2}\right\} = e^{-at}\cos(bt),$$

$$\mathcal{L}^{-1}\left\{\frac{b}{(s+a)^2+b^2}\right\} = e^{-at}\sin(bt),$$

we have, for the various terms:

$$\mathcal{L}^{-1}\left\{2 \cdot \frac{s+1}{(s+1)^2 + 4}\right\} = 2e^{-t}\cos(2t)$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^2+4}\right\} = \frac{1}{2}e^{-t}\sin(2t)$$

## Step 4: Combine the results

$$y(t) = 2e^{-t}\cos(2t) + \frac{1}{2}e^{-t}\sin(2t)$$

## Extremely important result

a LTI in free evolution behaves as a combination of terms  $e^{\lambda t}$ ,  $te^{\lambda t}$ ,  $t^2e^{\lambda t}$ , etc. for a set of different  $\lambda$ 's and powers of t, called the *modes* of the system

## Extremely important result

a LTI in free evolution behaves as a combination of terms  $e^{\lambda t}$ ,  $te^{\lambda t}$ ,  $t^2e^{\lambda t}$ , etc. for a set of different  $\lambda$ 's and powers of t, called the *modes* of the system

*Discussion:* assuming that we have two modes,  $e^{-0.3t}$  and  $e^{-1.6t}$ , so that

$$y(t) = \alpha_1 e^{-0.3t} + \alpha_2 e^{-1.6t}.$$

What determines  $\alpha_1$  and  $\alpha_2$ ?

second case: irrational U(s)

# In this case we cannot use partial fractions decompositions as before

from 
$$Y(s) = \frac{M(s)}{A(s)} + \frac{B(s)}{A(s)}U(s)$$
 we follow the algorithm

- find  $y_{\text{free}}(t)$  from PFDs of  $\frac{M(s)}{A(s)}$  as before
- find the impulse response h(t) from PFDs of  $\frac{B(s)}{A(s)}$  as before
- find  $y_{\text{forced}}(t)$  as h \* u(t)

# Summarizing

**Compute** free evolutions and forced responses of LTI systems using Laplace-based formulas (but only as procedural tools)

- Laplace the ARMA
- if u(t) admits a rational U(s) then write  $Y(s) = \frac{\text{polynomial}}{\text{polynomial}}$ , do PFD, and do inverse-Laplaces
- if u(t) does not admit a rational U(s), do similarly as before but do PFD only for the free evolution and impulse response, and find the forced response by means of convolution

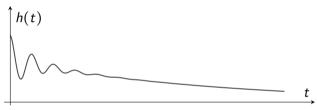


#### Two essential libraries

- https://python-control.readthedocs.io/en/0.10.1/generated/ control.modal form.html
- https://docs.sympy.org/latest/modules/physics/control/lti.html



Which type of LTI system may produce the impulse response h(t) represented in the picture?



#### **Potential answers:**

I: first order

II: second order

III: at least third order

IV: I do not know

Which type of LTI system may produce the impulse response h(t) represented in the picture?



#### **Potential answers:**

I: first order

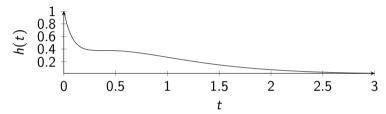
II: second order

III: third order

IV: at least fourth order

V: I do not know

Which type of LTI system may produce the impulse response h(t) below?



#### **Potential answers:**

I: first order

II: second order

III: at least third order

IV: I do not know

What is the primary purpose of using Laplace transforms in solving LTI systems?

#### **Potential answers:**

- I: To convert differential equations into algebraic equations for easier solving.
- II: To transform convolution in the time domain into multiplication in the Laplace domain.
- III: To directly compute the eigenvalues of the system matrix.
- IV: To eliminate the need for initial conditions in solving differential equations.
- V: I do not know.

What is the correct form of the inverse Laplace transform of  $\frac{1}{(s-\lambda)^2}$ ?

#### Potential answers:

I:  $e^{\lambda t}$ 

II:  $te^{\lambda t}$ III:  $te^{\lambda t}$ IV:  $\frac{1}{2}t^2e^{\lambda t}$ V: I do not know.

What is the inverse Laplace transform of  $\frac{s+1}{(s+1)^2+4}$ ?

#### **Potential answers:**

I:  $e^{-t}\sin(2t)$ 

II:  $e^{-t}\cos(2t)$ 

III:  $e^{-t}\cos(t)$ 

IV:  $e^{-t}\sin(t)$ 

V: I do not know.

In the ARMA model  $y^{(n)} = a_{n-1}y^{(n-1)} + \ldots + a_0y + b_mu^{(m)} + \ldots + b_0u$ , why is the leading coefficient of  $y^{(n)}$  typically set to 1?

#### Potential answers:

I: To ensure the system is stable.

II: To simplify the computation of eigenvalues.

III: To reduce the number of parameters and work with monic polynomials.

IV: To make the system linear time-invariant.

V: I do not know.

What determines the coefficients  $\alpha_1$  and  $\alpha_2$  in the free evolution response  $y(t) = \alpha_1 e^{-0.3t} + \alpha_2 e^{-1.6t}$ ?

#### **Potential answers:**

I: The eigenvalues of the system matrix.

II: The input signal u(t).

III: The initial conditions of the system.

IV: The poles of the transfer function.

V: I do not know.

# Recap of sub-module "computing free evolutions and forced responses of LTI systems"

- finding such signals require knowing a couple of formulas by heart
- partial fraction decomposition is king here, one needs to know how to do that

?