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Contents map

developed content units taxonomy levels
complex numbers u1, e1

prerequisite content units taxonomy levels
real numbers u1, e1
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Roadmap

definition
sum, subtraction, multiplication, division
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What is a complex number, and why did we introduce them?
In essence:

1 a point in the Cartesian plane
2 to be sure to find all the roots of polynomials (i.e., be able to write polynomials in

convenient forms)

Re

Im
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The “imaginary unit”

Re

Im

i ∶ i2
= −1
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The absolute value of a complex number

Re

Im

Meaning: Euclidean length of the vector. Very important for control, since very often
we compute the absolute value of a transfer function at a specific s = iω (and very very
often the transfer function is rational)
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Simple operations with complex numbers: sums, graphically
Im

Re

z1

z2

z1 + z2
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Simple operations with complex numbers: sums, mathematically

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i (b1 + b2)
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Simple operations with complex numbers: subtractions, graphically
Im

Re

z1

z2

−z2

z1 − z2
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Simple operations with complex numbers: subtractions, mathematically

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1 − z2 = (a1 + ib1) − (a2 + ib2) = (a1 − a2) + i (b1 − b2)
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Simple operations with complex numbers: conjugation, graphically
Im

Re

z = a + ib

z̄ = a − ib
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Simple operations with complex numbers: conjugation, mathematically

Re

Im

z1 = a1 + ib1

implies
z1 = a1 − ib1
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Polar coordinates

θ

Im

Re

r
b = sin θ

a = cos θ

z = a + ib

can be rewritten through r and θ so that

a = r cos θ and b = r sin θ

so that
z = r (cos θ + i sin θ)
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Polar coordinates

θ

Im

Re

r
b = sin θ

a = cos θ

Equations:
r = ∣z∣ =

√
a2 + b2 =

√
zz

θ = arg z = atan(b, a) = tan−1
(

b

a
)

Notation:
r = absolute value or modulus of z

θ = argument, angle, or phase of z Complex numbers - Complex numbers - introduction 14



Problem: different θ’s lead to the same z

θ

Im

Re

r
b = sin θ

a = cos θ

Definition: principal value of z = that value of θ that is in [−π, π]
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Simple operations with complex numbers: multiplication (using polar
coordinates)

Re

Im

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]
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Simple operations with complex numbers: multiplication (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1z2 = (a1 + ib1) (a2 + ib2) = (a1a2 − b1b2) + i (a1b2 + a2b1)
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Conjugacy: a good way of simplifying the previous operations

addition: z + z = a + ib + a − ib = 2a, thus Re (z) = 1
2
(z + z)

subtraction: z − z = a + ib − a + ib = 2ib, thus Im (z) = 1
2i
(z + z)

multiplication: zz = (a + ib) (a − ib) = a2
+ b2, thus ∣z∣2 = zz
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Usefulness of the multiplication: it enables Taylor expansions!
Taylor expansions: a tool to do not underestimate

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] Ô⇒ zn well defined

E.g., thus
ez
= 1 + z +

1
2!

z2
+

1
3!

z3
+ . . .
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Simple operations with complex numbers: inversion (using polar
coordinates)

Re

Im

z1
z2
=

r1
r2
[cos (θ1 − θ2) + i sin (θ1 − θ2)]
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Simple operations with complex numbers: inversion (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1

implies
z−1

1 =
a1

a2
1 + b2

1
− i

b1
a2

1 + b2
1
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Simple operations with complex numbers: division (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1
z2
=

a1 + ib1
a2 + ib2

=
(a1 + ib1) (a2 − ib2)

(a2 + ib2) (a2 − ib2)
=

a1a2 + b1b2
a2

2 + b2
2
+ i

b1a2 − a1b2
a2

2 + b2
2Complex numbers - Complex numbers - introduction 22



Recap of the module “Complex numbers - introduction”
1 there are a few operations with complex numbers that one should know how to

handle
2 it will be clear later on how these operations are essential building blocks for

designing filters
3 multiplying complex numbers means multiplying the modulus and summing the

phases; dividing means dividing the modulus and subtracting the phases
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Contents map

developed content units taxonomy levels
complex functions u1, e1

prerequisite content units taxonomy levels
complex numbers u1, e1
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Roadmap

definition
why are they important?
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Complex function: definition

f ∶ C↦ C f(z) = u(x, y) + iv(x, y)

Re

Im

↦

Re

Im

In polar representations: (r, θ)↦ (r′, θ′) with in general both r′ and θ′ functions of
both r and θ

Complex numbers - Complex functions 4



Example: if f(z) = z2 + 3z then what is f(1 + 3j)?

f(z) = (x + iy)(x + iy) + 3x + 3iy

= x2
+ 2ixy − y2

+ 3x + 3iy

= x2
− y2
+ 3x + i(2xy + 3y)

thus
u(x, y) = x2

− y2
+ 3x

v(x, y) = 2xy + 3y

thus
f(1 + 3j) = u(1, 3) + iv(1, 3)

= 13
− 32
+ 3 + i(2 ⋅ 1 ⋅ 3 + 3 ⋅ 3)

= −5 + 15i
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Complex functions: why are they important?
Spoiler: the forced evolution is given by

Y (s) =H(s)U(s)

with H(s) very often a ratio of complex polynomials Ô⇒ essential tool for automatic
control people: finding the zeros of complex polynomials
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Finding the zeros of complex polynomials Ô⇒ finding the roots of
complex functions

Primary definition: root of a complex number
if z ∈ C and n ∈ N, then the n complex roots of z are the n complex numbers
z0, . . . , zn−1 for which zn

k = z

How to find them? We know that

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]

thus
n
√

z = n
√

r (cos θ + 2kπ

n
+ i sin θ + 2kπ

n
) for k = 0, 1, . . . , n − 1
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Zeros of complex functions = roots of complex numbers
Geometrically:

Re

Im

these n roots always exist
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Roots of complex numbers, example: quartic roots of 1

4√1 = {1, i,−1,−i}

(note that only two of them are in R)

Im

Re
-2 -1 1 2

-1

1

2
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IMPORTANT: ONE SHOULD CONSIDER THE PRINCIPAL VALUE
. . . otherwise one may artificially add 2πk to the phase of w = n

√
z and have an infinite

number of roots . . .
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Why are we using so much time on this?
Because we often have to do with objects of the type zn

+ an−1zn−1
+ . . .+ a1z + a0 = 0,

thus we need to know what we are dealing with! Essential results:
n-order polynomials have always from 0 to n real roots (potentially with their own
multiplicities, e.g., (z − 3)4

n-order polynomials have always n complex roots (again, potentially with their
own multiplicities, e.g., (z − i)2(z + i)2)
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Example of finding the zeros of a complex function

z4
− 6iz2

+ 16 = 0

implies
z1 = 2 + 2i z2 = −2 − 2i z3 = −1 + i z4 = 1 − i

(to get the solution let y = z2, and then do a bit of massaging)
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Recap of the module “Complex functions”
1 finding the zeros of complex polynomials is very important (will be shown to be

an essential step in characterizing control systems)
2 the n-th roots of a complex number is a set of n complex numbers with

opportune modulus and phase, so that they are placed in a geometrically balanced
way along a circle in the complex plane

Complex numbers - Complex functions 13



Complex exponentials
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Contents map

developed content units taxonomy levels
complex exponential u1, e1

prerequisite content units taxonomy levels
complex numbers u1, e1
complex functions u1, e1
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Roadmap

intuitions
definition
Euler’s identities
complex logarithms
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In the previous episodes . . .

complex sums and multiplications
complex roots
complex polynomials

→ generalizing everything, even the functions
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Discussion

why are exponentials important in control?

Because they are the essence of the modes of LTI systems, and LTI systems are often
good approximations of nonlinear systems around their equilibria
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First usefulness of complex exponentials: simplify notation even further
Path: rewrite

ez
= 1 + z +

1
2!

z2
+

1
3!

z3
+ . . .

in a notationally simpler way using z = r (cos θ + i sin θ) (and, of course, using Euler’s
formula)
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Why does Euler’s formula work? (so that one may remember it more. . . )
Starting point:

ez
= ex+iy

= exeiy

but

eiy
= 1 + iy +

1
2!
(iy)2 +

1
3!
(iy)3 + . . . +

1
k!
(iy)k + . . .

= (1 − 1
2!

y2
+

1
4!

y4
−

1
6!

y6
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cos(y)

+i(y −
1
3!

y3
+

1
5!

y5
−

1
7!

y7
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sin(y)

thus
ez
= ex
(cos y + i sin y)
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Important equivalence

ez
= ex
(cos y + i sin y)

implies
(cos θ + i sin θ) = eiθ
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The new representation given by Euler’s formula and polar representations

z = x + iy = r (cos θ + i sin θ) r =
√

x2 + y2 θ = atany

x

implies
z = reiθ

This confirms the intuition that multiplying z in the complex plane by eiθ means
rotating z of θ radiants anti-clockwise in C

Examples
zeiα

= reiθeiα
= rei(θ+α)

zi = reiθei π
2 = rei(θ+π

2 )

that, by the way, implies (x + iy) i = −y + ix, i.e., a 90-degrees rotation
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How to remember the trigonometric identities
Starting point:

eiy
= (1 − 1

2!
y2
+

1
4!

y4
−

1
6!

y6
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cos(y)
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Some important implications

eiπ
= −1, eπi/2

= i, e−πi/2
= −i, e−πi

= −1
exponentials are never equal to 0, i.e., ez

≠ 0 independently of z

exponentials are periodic, i.e., ez+2πi
= ez

Notation: “fundamental region of the exponential”
−π < Im (z) ≤ π
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Multiplications and divisions through the complex functions

z1 = r1eiθ1 and z2 = r2eiθ2

imply
z1z2 = r1r2ei(θ1+θ2)

and
z1
z2
=

r1
r2

ei(θ1−θ2)
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Roots through the complex functions
w = zn is s.t. w = reiθ+2πk and is equal to

zk = r1/nei( θ
n
+ 2kπ

n
)

(note that besides k = 0, 1, . . . , n − 1, for other k’s we get the same roots as before)
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Recap of the module “Complex exponentials”
1 complex exponentials can be defined through Taylor expansions
2 they give birth to a refined polar notation for complex numbers that highlights the

meaning of multiplication and division of complex numbers
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