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• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

Complex numbers - introduction

Complex numbers - Complex numbers - introduction 1

•

notes



Contents map

developed content units taxonomy levels
complex numbers u1, e1

prerequisite content units taxonomy levels
real numbers u1, e1

Complex numbers - Complex numbers - introduction 2

•

notes

Roadmap

definition
sum, subtraction, multiplication, division

Complex numbers - Complex numbers - introduction 3

• this module refreshes some operations that are essential building blocks for designing filters
• these concepts should be already known but better to refresh them before starting learning

how to design filters

notes



What is a complex number, and why did we introduce them?
In essence:

1 a point in the Cartesian plane
2 to be sure to find all the roots of polynomials (i.e., be able to write polynomials in

convenient forms)

Re

Im

Complex numbers - Complex numbers - introduction 4

• in its essence, complex numbers have been introduced to be able to find all the roots of
polynomials

• essentially they are points in a Cartesian plane

notes

The “imaginary unit”

Re

Im

i ∶ i2
= −1
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• formally the imaginary unit satisfies this equality
• there is more behind, though: we recommend you to watch

https://www.youtube.com/watch?v=SP-YJe7Vldo

notes

https://www.youtube.com/watch?v=SP-YJe7Vldo


The absolute value of a complex number

Re

Im

Meaning: Euclidean length of the vector. Very important for control, since very often
we compute the absolute value of a transfer function at a specific s = iω (and very very
often the transfer function is rational)

Complex numbers - Complex numbers - introduction 6

• as we will see later on, the absolute value of a complex number is a paramount operation
that will be done very often

• for now in the course the concept of “transfer function” has not been introduced yet, but
you will see how taking the absolute value of a transfer function is something that is done
very often and that involves taking the absolute value of complex numbers

notes

Simple operations with complex numbers: sums, graphically
Im

Re

z1

z2

z1 + z2

Complex numbers - Complex numbers - introduction 7

• the sum of two complex numbers can be thought graphically as the typical sum of two
vectors

notes



Simple operations with complex numbers: sums, mathematically

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i (b1 + b2)
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• mathematically speaking the formulas are then these ones

notes

Simple operations with complex numbers: subtractions, graphically
Im

Re

z1

z2

−z2

z1 − z2
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• similarly, the subtraction is as subtracting vectors

notes



Simple operations with complex numbers: subtractions, mathematically

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1 − z2 = (a1 + ib1) − (a2 + ib2) = (a1 − a2) + i (b1 − b2)
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• that mathematically translates into these formulas

notes

Simple operations with complex numbers: conjugation, graphically
Im

Re

z = a + ib

z̄ = a − ib
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• conjugating means flipping along the real axis
• the importance of conjugating will be clear when we introduce the product of two complex

numbers
• moreover remember that the roots of a real polynomial are either real or complex conjugate

pairs

notes



Simple operations with complex numbers: conjugation, mathematically

Re

Im

z1 = a1 + ib1

implies
z1 = a1 − ib1
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• mathematically flipping along the real axis means this

notes

Polar coordinates

θ

Im

Re

r
b = sin θ

a = cos θ

z = a + ib

can be rewritten through r and θ so that

a = r cos θ and b = r sin θ

so that
z = r (cos θ + i sin θ)
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• instead of using classical “x-y” coordinates, one may also use polar ones
• graphically and mathematically the two are connected in this way

notes



Polar coordinates

θ

Im

Re

r
b = sin θ

a = cos θ

Equations:
r = ∣z∣ =

√
a2 + b2 =

√
zz

θ = arg z = atan(b, a) = tan−1
(

b

a
)

Notation:
r = absolute value or modulus of z

θ = argument, angle, or phase of z Complex numbers - Complex numbers - introduction 14

• further mathematical quantities that can be defined using polar coordinates are these ones
• note that we still haven’t introduced the multiplication among complex numbers, but this

will be done soon

notes

Problem: different θ’s lead to the same z

θ

Im

Re

r
b = sin θ

a = cos θ

Definition: principal value of z = that value of θ that is in [−π, π]
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• there is also something to be remembered, that is that polar representations are somehow
not univoque, in the sense that formally different angles may mean actually the same thing

• we thus give a specific name to that angle that is the smallest one in absolute value among
all the ones that give the same complex number

notes



Simple operations with complex numbers: multiplication (using polar
coordinates)

Re

Im

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]
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• multiplying two complex numbers means multiplying their modulus and summing their
phases

• thus it is a simultaneous stretching and rotating
• see also the video in

https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:
complex/x9e81a4f98389efdf:complex-mul/a/visualizing-complex-multiplication
for some animations

notes

Simple operations with complex numbers: multiplication (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1z2 = (a1 + ib1) (a2 + ib2) = (a1a2 − b1b2) + i (a1b2 + a2b1)
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• the equations for the multiplication with the Cartesian coordinates are a bit more involved,
corresponding to these

notes

https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:complex/x9e81a4f98389efdf:complex-mul/a/visualizing-complex-multiplication
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:complex/x9e81a4f98389efdf:complex-mul/a/visualizing-complex-multiplication


Conjugacy: a good way of simplifying the previous operations

addition: z + z = a + ib + a − ib = 2a, thus Re (z) = 1
2
(z + z)

subtraction: z − z = a + ib − a + ib = 2ib, thus Im (z) = 1
2i
(z + z)

multiplication: zz = (a + ib) (a − ib) = a2
+ b2, thus ∣z∣2 = zz

Complex numbers - Complex numbers - introduction 18

• note that the operation of conjugating complex numbers simplifies quite a lot the operations
we saw up to now

notes

Usefulness of the multiplication: it enables Taylor expansions!
Taylor expansions: a tool to do not underestimate

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] Ô⇒ zn well defined

E.g., thus
ez
= 1 + z +

1
2!

z2
+

1
3!

z3
+ . . .

Complex numbers - Complex numbers - introduction 19

• note that multiplying complex numbers enables doing several other operations
• one of the most important ones for our course is taking Taylor expansions
• thus multiplication is a fundamental building block

notes



Simple operations with complex numbers: inversion (using polar
coordinates)

Re

Im

z1
z2
=

r1
r2
[cos (θ1 − θ2) + i sin (θ1 − θ2)]
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• inverting z means finding that complex number z′ that if we multiply the two the product is
1 + i0

• this means finding that z′ that has the inverse of the modulus and the opposite of the phase

notes

Simple operations with complex numbers: inversion (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1

implies
z−1

1 =
a1

a2
1 + b2

1
− i

b1
a2

1 + b2
1
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• once again with Cartesian coordinates the formulas look more involved
• graphically, though, they are the same thing

notes



Simple operations with complex numbers: division (using Cartesian
coordinates)

Re

Im

z1 = a1 + ib1 z2 = a2 + ib2

implies
z1
z2
=

a1 + ib1
a2 + ib2

=
(a1 + ib1) (a2 − ib2)

(a2 + ib2) (a2 − ib2)
=

a1a2 + b1b2
a2

2 + b2
2
+ i

b1a2 − a1b2
a2

2 + b2
2Complex numbers - Complex numbers - introduction 22

• this thus enables also dividing complex numbers
• from a graphical perspective it means dividing the modulus and subtracting the phase

notes

Recap of the module “Complex numbers - introduction”
1 there are a few operations with complex numbers that one should know how to

handle
2 it will be clear later on how these operations are essential building blocks for

designing filters
3 multiplying complex numbers means multiplying the modulus and summing the

phases; dividing means dividing the modulus and subtracting the phases

Complex numbers - Complex numbers - introduction 23

• the importance of what we have been doing in this module is this one
• the essential operation that you shall remember for this course is the one highlighted her

notes



Complex functions

Complex numbers - Complex functions 1

•

notes

Contents map

developed content units taxonomy levels
complex functions u1, e1

prerequisite content units taxonomy levels
complex numbers u1, e1

Complex numbers - Complex functions 2

•

notes



Roadmap

definition
why are they important?

Complex numbers - Complex functions 3

• in this module we go through the definition of complex functions, and then describe why
they are important for this course

notes

Complex function: definition

f ∶ C↦ C f(z) = u(x, y) + iv(x, y)

Re

Im

↦

Re

Im

In polar representations: (r, θ)↦ (r′, θ′) with in general both r′ and θ′ functions of
both r and θ

Complex numbers - Complex functions 4

• a complex function is a map from the complex plane to the complex plane
• it can be written both in terms of Cartesian maps or polar maps
• in any case a complex function is a warping of the 2D space

notes



Example: if f(z) = z2 + 3z then what is f(1 + 3j)?

f(z) = (x + iy)(x + iy) + 3x + 3iy

= x2
+ 2ixy − y2

+ 3x + 3iy

= x2
− y2
+ 3x + i(2xy + 3y)

thus
u(x, y) = x2

− y2
+ 3x

v(x, y) = 2xy + 3y

thus
f(1 + 3j) = u(1, 3) + iv(1, 3)

= 13
− 32
+ 3 + i(2 ⋅ 1 ⋅ 3 + 3 ⋅ 3)

= −5 + 15i

Complex numbers - Complex functions 5

• just to give an example, to operate with complex functions means handling both imaginary
and real components as done here

notes

Complex functions: why are they important?
Spoiler: the forced evolution is given by

Y (s) =H(s)U(s)

with H(s) very often a ratio of complex polynomials Ô⇒ essential tool for automatic
control people: finding the zeros of complex polynomials

Complex numbers - Complex functions 6

• for control purposes we need to be able to deal with some specific complex functions (more
precisely, the so called transfer functions, that we will analyse soon)

• through these functions we will be able to compute forced evolutions

notes



Finding the zeros of complex polynomials Ô⇒ finding the roots of
complex functions

Primary definition: root of a complex number
if z ∈ C and n ∈ N, then the n complex roots of z are the n complex numbers
z0, . . . , zn−1 for which zn

k = z

How to find them? We know that

z1z2 = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)]

thus
n
√

z = n
√

r (cos θ + 2kπ

n
+ i sin θ + 2kπ

n
) for k = 0, 1, . . . , n − 1

Complex numbers - Complex functions 7

• to know what it means to find the zeros of a complex polynomial requires knowing first
what it means to find the roots of a complex function

• and to know what these are, one needs to know first what are the roots of a complex number

• the definition is mutuated directly from the one that is used for real numbers. The n-th
roots of z are all that numbers that elevated to that power they give n

• how to find them? Well, we know that multiplying two complex numbers means multiplying
the modulus and summing the phases

• then the n-th roots must be such that this happens
• in other words, the modulus of the root must have a modulus that is a (real) root, and the

phase of the root must be s.t. if multiplied by n it gives the phase of the original number
• watch out though at the fact that the polar coordinates have a 2π periodicity - this means

that there will be n different roots, each with the same modulus but a different phase

notes

Zeros of complex functions = roots of complex numbers
Geometrically:

Re

Im

these n roots always exist

Complex numbers - Complex functions 8

• geometrically thus these roots are placed on a circle of radius n
√

r and at n different regular
angular positions

• see also https://www.youtube.com/watch?v=N0Y8ia57C24&ab_ for more information, if
this is not clear

notes

https://www.youtube.com/watch?v=N0Y8ia57C24&ab_


Roots of complex numbers, example: quartic roots of 1

4√1 = {1, i,−1,−i}

(note that only two of them are in R)

Im

Re
-2 -1 1 2

-1

1

2
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• applying this concept, we see that the quartic roots of unity are these ones

notes

IMPORTANT: ONE SHOULD CONSIDER THE PRINCIPAL VALUE
. . . otherwise one may artificially add 2πk to the phase of w = n

√
z and have an infinite

number of roots . . .

Complex numbers - Complex functions 10

• and be careful for this. . .

notes



Why are we using so much time on this?
Because we often have to do with objects of the type zn

+ an−1zn−1
+ . . .+ a1z + a0 = 0,

thus we need to know what we are dealing with! Essential results:
n-order polynomials have always from 0 to n real roots (potentially with their own
multiplicities, e.g., (z − 3)4

n-order polynomials have always n complex roots (again, potentially with their
own multiplicities, e.g., (z − i)2(z + i)2)

Complex numbers - Complex functions 11

• and this is a motivational slide, with some results one should always remember
• important: if one sums up the various multiplicities of the various complex roots then one

gets n

notes

Example of finding the zeros of a complex function

z4
− 6iz2

+ 16 = 0

implies
z1 = 2 + 2i z2 = −2 − 2i z3 = −1 + i z4 = 1 − i

(to get the solution let y = z2, and then do a bit of massaging)

Complex numbers - Complex functions 12

• an example is this one

notes



Recap of the module “Complex functions”
1 finding the zeros of complex polynomials is very important (will be shown to be

an essential step in characterizing control systems)
2 the n-th roots of a complex number is a set of n complex numbers with

opportune modulus and phase, so that they are placed in a geometrically balanced
way along a circle in the complex plane

Complex numbers - Complex functions 13

• these are then the most important messages of this module

notes

Complex exponentials

Complex numbers - Complex exponentials 1

•

notes



Contents map

developed content units taxonomy levels
complex exponential u1, e1

prerequisite content units taxonomy levels
complex numbers u1, e1
complex functions u1, e1

Complex numbers - Complex exponentials 2

•

notes

Roadmap

intuitions
definition
Euler’s identities
complex logarithms

Complex numbers - Complex exponentials 3

• in this module we see a quantity whose importance is high for control systems engineers

notes



In the previous episodes . . .

complex sums and multiplications
complex roots
complex polynomials

→ generalizing everything, even the functions

Complex numbers - Complex exponentials 4

• and this module follows the trend initiated in the previous modules of generalizing as much
as possible things from the ’real’ realm to the ’complex’ one

notes

Discussion

why are exponentials important in control?

Because they are the essence of the modes of LTI systems, and LTI systems are often
good approximations of nonlinear systems around their equilibria

Complex numbers - Complex exponentials 5

• an important result that was discovered in the linear algebra part is that exponentials are
essential quantities characterizing LTI systems

• since eigenvalues may be complex, we need to be able to deal with complex exponentials

notes



First usefulness of complex exponentials: simplify notation even further
Path: rewrite

ez
= 1 + z +

1
2!

z2
+

1
3!

z3
+ . . .

in a notationally simpler way using z = r (cos θ + i sin θ) (and, of course, using Euler’s
formula)

Complex numbers - Complex exponentials 6

• the first goal of this module is to rewrite a complex exponential, that can always be defined
by means of its Taylor expansion, in a notationally convenient way

notes

Why does Euler’s formula work? (so that one may remember it more. . . )
Starting point:

ez
= ex+iy

= exeiy

but

eiy
= 1 + iy +

1
2!
(iy)2 +

1
3!
(iy)3 + . . . +

1
k!
(iy)k + . . .

= (1 − 1
2!

y2
+

1
4!

y4
−

1
6!

y6
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cos(y)

+i(y −
1
3!

y3
+

1
5!

y5
−

1
7!

y7
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sin(y)

thus
ez
= ex
(cos y + i sin y)

Complex numbers - Complex exponentials 7

• here there are some formulas, all based on Taylor expansions of the various involved
functions, that lead to an interesting rewriting of ez

• note how here using Cartesian coordinates is more appealing than polar ones

notes



Important equivalence

ez
= ex
(cos y + i sin y)

implies
(cos θ + i sin θ) = eiθ

Complex numbers - Complex exponentials 8

• this equivalence will be used very soon, together with its implications

notes

The new representation given by Euler’s formula and polar representations

z = x + iy = r (cos θ + i sin θ) r =
√

x2 + y2 θ = atany

x

implies
z = reiθ

This confirms the intuition that multiplying z in the complex plane by eiθ means
rotating z of θ radiants anti-clockwise in C

Examples
zeiα

= reiθeiα
= rei(θ+α)

zi = reiθei π
2 = rei(θ+π

2 )

that, by the way, implies (x + iy) i = −y + ix, i.e., a 90-degrees rotation

Complex numbers - Complex exponentials 9

• indeed the previous equivalence in the previous slide implies that we can compact the
notation for polar coordinates even more

• and with this notation we see immediately that multiplication means essentially rotation

• this means that these examples can be carried out in this way

notes



How to remember the trigonometric identities
Starting point:

eiy
= (1 − 1

2!
y2
+

1
4!

y4
−

1
6!

y6
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cos(y)

+i(y −
1
3!

y3
+

1
5!

y5
−

1
7!

y7
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sin(y)

(must be in this way, because “cos” is even, “sin” is odd). But also

e−iy
= (1 − 1

2!
y2
+

1
4!

y4
−

1
6!

y6
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=cos(y)

−i(y −
1
3!

y3
+

1
5!

y5
−

1
7!

y7
+ . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=− sin(y)

thus
sin y =

1
2i
(eiy
− e−iy) cos y =

1
2
(eiy
+ e−iy)

Complex numbers - Complex exponentials 10

• in this slide there are some mnemonics, to help memorizing (that is important too, from a
learning perspective)

• a way to remember cosine and sine’s expansions, is that they alternate signs, and cosine
starts on the x axis, where one finds the 1. The sine is thus the other ’alternation’

• putting the opposite in the exponent leads then to this expansion

• and then one may combine the two into one

notes

Some important implications

eiπ
= −1, eπi/2

= i, e−πi/2
= −i, e−πi

= −1
exponentials are never equal to 0, i.e., ez

≠ 0 independently of z

exponentials are periodic, i.e., ez+2πi
= ez

Notation: “fundamental region of the exponential”
−π < Im (z) ≤ π

Complex numbers - Complex exponentials 11

• a set of implications follow immediately

• the first four are essentially the quartic roots of unity, using the polar-complex notation and
the geometrical interpretation of what the roots of a complex number are

• the second thing (very important) is that esomething cannot be zero, independently of that
something

• plus once again the complex exponentials inherit the periodicity of polar representations
• this means that one should always consider the principal values of the complex numbers one

is handling

notes



Multiplications and divisions through the complex functions

z1 = r1eiθ1 and z2 = r2eiθ2

imply
z1z2 = r1r2ei(θ1+θ2)

and
z1
z2
=

r1
r2

ei(θ1−θ2)

Complex numbers - Complex exponentials 12

• given the polar-complex notation, now performing multiplications and divisions is
immediate: here the multiplication / division of the moduli and the sum / subtraction of
the phases is directly visible in the expressions

notes

Roots through the complex functions
w = zn is s.t. w = reiθ+2πk and is equal to

zk = r1/nei( θ
n
+ 2kπ

n
)

(note that besides k = 0, 1, . . . , n − 1, for other k’s we get the same roots as before)

Complex numbers - Complex exponentials 13

• this means that one can see roots directly too

notes



Recap of the module “Complex exponentials”
1 complex exponentials can be defined through Taylor expansions
2 they give birth to a refined polar notation for complex numbers that highlights the

meaning of multiplication and division of complex numbers

Complex numbers - Complex exponentials 14

• the most important messages of this module are then these

notes
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