• Most important python code for this sub-module

• Self-assessment material

- 1

- Pole Placement with PID Controllers 1

Contents map

developed content units	taxonomy levels
Pole placement with PID	u2, e3

prerequisite content units	taxonomy levels
Transfer functions, 1st/2nd order models	u1, e2
PID control basics	u1, e2

- Pole Placement with PID Controllers 2

Main ILO of sub-module "Pole Placement with PID Controllers"

Design a PID controller to place the closed-loop poles at desired locations

Why Pole Placement with PID?

- Pole placement helps us control system response: speed, overshoot, damping.
- PID controllers can shift poles by adjusting K_P , K_I , K_D .
- This is useful when we want specific time-domain behavior (e.g., settling time, overshoot).

- Pole Placement with PID Controllers 4

Worked Example: First-Order Plant

Given: $G(s) = \frac{1}{s+1}$ (first-order system) **Goal:** Place closed-loop pole at s = -4 **Try:** Use a proportional controller: $C(s) = K_P$ **Closed-loop:** $\frac{K_P G(s)}{1 + K_P G(s)} = \frac{K_P}{s+1 + K_P}$ **Compare:** $s + (1 + K_P) = s + 4 \Rightarrow K_P = 3$

Second-Order System and PID

Given: $G(s) = \frac{1}{s(s+1)}$ (2nd order, non-minimum phase) **Controller:** $C(s) = K_P + \frac{K_I}{s} + K_D s$ **Closed-loop char. poly:** Denominator of 1 + C(s)G(s)Choose desired poles (e.g., $s = -2 \pm j2$): Desired poly: $s^2 + 4s + 8$ Solve for K_P , K_I , K_D so that closed-loop denominator matches this.

- Pole Placement with PID Controllers 6

Summarizing

From desired poles to PID parameters

- Pick desired poles based on time response specs
- Derive desired characteristic polynomial
- Write closed-loop transfer function with PID
- Match polynomials & solve for K_P , K_I , K_D
- Note that you may not be able to place the poles where you want (i.e., the system above to do not have solutions)

Most important python code for this sub-module

- Pole Placement with PID Controllers 1

Python Enables Symbolic Matching of PID Coefficients

sympy

notes

- Pole Placement with PID Controllers 2

Self-assessment material

- Pole Placement with PID Controllers 1

Question 1

What is the first step in designing a PID controller using pole placement?

Potential answers:	
I: (wrong)	Tune K_P using trial-and-error
II: (wrong)	Write the plant transfer function in state-space
III: (correct)	Choose desired closed-loop poles based on time-domain specs
IV: (wrong)	Set the integral gain to zero initially

Solution 1:

The first step is to decide where you want the poles to bethis determines the desired system behavior.

- Pole Placement with PID Controllers 2

Question 2

What is the main goal of pole placement when designing a controller?

Potential answers:

I:	(wrong)	To cancel all poles and zeros of the system
II:	(correct)	To achieve desired time-domain behavior such as settling time
	and oversho	ot
III:	(wrong)	To make the transfer function purely algebraic
IV:	(wrong)	To eliminate the need for feedback
V:	(wrong)	I do not know

Solution 1:

Pole placement is used to ensure the closed-loop poles correspond to desired system dynamics, influencing speed, damping, and stability. - Pole Placement with PID Controllers 3

see the associated solution(s), if compiled with that ones :)

Question 3

How does the derivative term (K_D) in a PID controller primarily affect the pole placement of a system?

Potential answers:

I:	(wrong)	It shifts the system poles toward the imaginary axis
II:	(wrong)	It always eliminates steady-state error
III:	(wrong)	It has no influence on the pole placement
IV:	(correct)	It influences the damping and stability by modifying the char-
	acteristic equation	
V:	(wrong)	l do not know

Solution 1:

The derivative term modifies the system's dynamics, particularly by rincreasing_{ID Controllers 4} damping and thus influencing the position of the closed-loop poles.

Question 4

What is the key mathematical operation used to design PID gains through pole placement?

Potential answers:	
I: (wrong) II: (wrong) III: (correct)	Taking the inverse Laplace transform of the plant Eliminating zeros from the open-loop transfer function Matching the closed-loop characteristic polynomial to a desired
one IV: (wrong)	Factorizing the numerator of the open-loop transfer function
V: (wrong)	I do not know

Solution 1:

Pole placement design requires expressing the closed-loop characteristic equation $_{\text{ID Controllers 5}}$ and matching its coefficients with those of a desired polynomial to solve for the PID gains.

Question 5

In a first-order system controlled by a proportional gain K_P , what is the effect of increasing K_P ?

Potential answers:		
I: (correct) speed	The pole moves further left on the real axis, increasing system	
II: (wrong)	The pole becomes complex and causes oscillations	
III: (wrong)	The system gain decreases and response slows down	
IV: (wrong)	The zero of the system moves into the right-half plane	
V: (wrong)	l do not know	

Solution 1:

For first-order systems, increasing K_P moves the closed-loop pole leftward (more D Controllers 6 negative real part), which speeds up the response.

Question 6

Which of the following best describes the correct order of steps for PID pole placement design?

Potential answers:

- Compute the system output first, then choose PID gains, then 1: (wrong) set desired poles
- II: (wrong) Start with experimental PID gains, simulate, and refine based on intuition
- Choose desired poles, derive the corresponding characteristic III: (correct) polynomial, and match it with the actual closed-loop polynomial to solve for gains
- Eliminate the need for poles by transforming to frequency domain IV: (wrong) V: (wrong)

I do not know

- Pole Placement with PID Controllers 7

Solution 1:

Correct PID pole placement design involves selecting desired dynamics, deriving the polynomial that produces them, and solving for PID parameters by matching coefficients.

Recap of sub-module "Pole Placement with PID Controllers"

- Pole placement allows us to achieve desired dynamics
- PID gains shift the closed-loop poles
- Match desired characteristic polynomial with actual one
- Use symbolic or numerical tools to solve for K_P , K_I , K_D

