
Block diagrams

- Block diagrams 1

•

notes

Contents map

developed content units taxonomy levels
block diagrams u1, e1

prerequisite content units taxonomy levels
transfer function u1, e1

- Block diagrams 2

•

notes



Main ILO of sub-module “Block diagrams”

Describe the purpose and advantages of using
block diagrams to a peer unfamiliar with them

Identify standard blockdiagram components (e.g., sum, in-
tegral, derivative, multiplication, generic function) when in-

terpreting or constructing block representations of time-
domain systems, using the lecture-provided visual notation

Construct a block diagram representation for a first-order lin-
ear differential equation of the form ẏ = ay + bu, using ba-
sic functional blocks (integrators, multipliers, summations)

Derive the closed-loop transfer function for a system with negative feed-
back, using the algebraic manipulation of Laplace-domain expressions

- Block diagrams 3

• By the end of this module, I want you to be able to confidently do all these things

• These are fundamental skills you’ll use throughout your engineering career

• Don’t worry if it seems abstract now - we’ll build up to it step by step

• Pay special attention to the feedback loop derivation - it’s one of the most important
concepts in control theory

notes

Roadmap

recap of the diagrams in the time domain
recap of the diagrams in the frequency domain
rules for how to transform the diagrams
examples

- Block diagrams 4

• Today we’re going to build on what you already know about block diagrams

• We’ll start with a quick review of time domain representations - this should be familiar from
your previous courses

• Then we’ll add the frequency domain perspective, which is crucial for control systems
analysis

• The transformation rules might seem tricky at first, but once you practice with the
examples, they’ll become second nature

• Remember, these diagrams are just visual representations of the equations we’ve been
working with

notes



Block diagrams - why?

used very often in companies
aid visualization (until a certain complexity is reached. . . )
enable “drag & drop” way of programming
here primarily used for interpretations

- Block diagrams 5

• Let me tell you why we’re spending time on this - in industry, you’ll see these diagrams
everywhere

• They’re like the universal language of control engineers

• While complex systems might become hard to visualize, for most practical applications
they’re incredibly useful

• Many control system design tools (like Simulink) use exactly this drag-and-drop approach

• But more importantly, they help us understand how different components interact in a
system

notes

Most common block diagrams in the time domain

x1

x2

x3

x1 − x2 + x3
+
−
+

x ∫0
+∫

t

0
xdt

∫0

x1

x2
× x1x2 x f (⋅) f (x)

x
d

dt
ẋ x c cx

- Block diagrams 6

• These are the building blocks of any control system diagram

• The sum block is how we represent adding or subtracting signals - notice the + and - signs

• The integral block is crucial - remember it always includes initial conditions

• Multiplication can be between two signals or by a constant - these are different operations

• The generic function block is powerful but dangerous - we’ll see why soon

• Derivatives appear less often in practice because they amplify noise

notes



Representing a first order DE with a block scheme

ẏ = ay + bu

u b y

y0

a

+
+

- Block diagrams 7

• This is a perfect example of how we combine basic blocks to represent differential equations

• Notice how the derivative appears on the left, but we implement it using integration

• The feedback path with gain ’a’ creates the system dynamics

• The input ’u’ gets scaled by ’b’ before entering the system

• This structure is fundamental - you’ll see variations of it constantly

notes

Discussion: how do we represent ẍ +
f

m
ẋ +

k

m
x =

1
m

u?

- Block diagrams 8

• Here’s a challenge for you to think about - how would you extend this to second order
systems?

• The procedure is similar but needs an additional integrator

• Remember that each derivative becomes an integrator in the diagram

• The damping term (with f/m) would create another feedback path

• If you’re stuck, think about how you’d solve the equation for the highest derivative

• I’ll show the solution in the video lecture, but try drawing it yourself first

notes



Block diagrams that are equal in both time and frequency domains
(Here we may use both x(t) and X(s))

x1

x2

x3

x1 − x2 + x3
+
−
+

x1

x2
× x1x2 x c cx

- Block diagrams 9

• Some operations look identical in both domains - these are the simplest cases

• Summation works the same whether we’re adding time signals or their Laplace transforms

• Multiplication by a constant is equally simple in both domains

• But be careful - multiplying two signals is different from multiplying two transfer functions!

• These similarities make it easier to switch between time and frequency domains

notes

Block diagrams that are logically the same in both time and frequency
domains

x
d

dt
ẋ x ∫0

+∫

t

0
xdt

∫0

X(s) s sX(s) X(s)
1
s

1
s

X(s)

- Block diagrams 10

• Here we see operations that are equivalent but look different

• Differentiation in time becomes multiplication by ’s’ in Laplace domain

• Integration becomes division by ’s’ plus initial conditions

• Notice how the initial conditions appear in the time domain but are often omitted in
frequency domain

• This is why we prefer frequency domain for analysis - it turns calculus into algebra!

notes



A block diagram that does not exist in the frequency domain

x f (⋅) f (x)

Discussion: why?

- Block diagrams 11

• This is a crucial limitation - nonlinear operations don’t translate directly to frequency
domain

• The Laplace transform can’t easily handle arbitrary nonlinear functions

• Think about it - how would you represent sin(y(t)) or
y(t)2intermsofY (s)?T hisiswhyweoftenlinearizesystemsbeforeanalyzingthem

•• Remember: frequency domain methods assume linearity and time-invariance

• When you see this block, you’ll need to either linearize it or stay in time domain

notes

in the following:
rules for manipulating block diagrams in the frequency domain

- Block diagrams 12

• Now we get to the really useful part - the rules for simplifying diagrams

• These rules will help you reduce complex systems to simpler equivalent forms

• They’re based on algebraic manipulations of the transfer functions

• I’ll show you the formal rules first, then we’ll practice applying them

• Mastering these will save you hours of work when analyzing systems

notes



Series of transfer functions

U(s) Ha(s) Hb(s) Y (s)

is equivalent to

U(s) Ha(s)Hb(s) Y (s)

Discussion: why?

- Block diagrams 13

• This is the simplest rule - series connection means multiplication

• Think of it like function composition: first apply Ha, thenapplyHbtotheresult

• Let’s think through it: The output Y is
Hbappliedtotheintermediatesignal, whichisHaappliedtoUSomathematically ∶ Y =

Hb(Ha(U)) = (HbůHa)U

•• The order matters in general, but for transfer functions it’s commutative

• Remember this only works for LTI systems - nonlinear systems don’t obey this rule

notes

Parallel of transfer functions

U(s)

Ha(s)

Hb(s)

+ Y (s)

is equivalent to

U(s) Ha(s) +Hb(s) Y (s)

Discussion: why?
- Block diagrams 14

• Parallel paths add their effects - this is superposition in action

• The same input goes to both systems, and their outputs are summed

• This works because of the linearity property of LTI systems

• The total output is the sum of each system’s response to the input

• Notice this wouldn’t work if the summing junction had different signs

• Also wouldn’t work if there were nonlinear elements in the paths

notes



Elimination of feedback loops

U(s) + Ha(s)

Hb(s)

Y (s)

is equivalent to

U(s)
Ha(s)

1 −Ha(s)Hb(s)
Y (s)

- Block diagrams 15

• This is the most important rule in control systems - feedback reduction

• The formula looks complex but has a beautiful symmetry to it

• Notice the denominator is 1 minus the loop gain (product of both transfer functions)

• This specific form is for positive feedback - we’ll see negative feedback soon

• Memorize this pattern - you’ll use it constantly in control system design

notes

Elimination of feedback loops: how to remember the formula

U(s) + Ha(s)

Hb(s)

Y (s)
Xα(s)

Xβ(s)

Y =HaXα

Xα = U +Xβ

Xβ =HbY

Ô⇒ Y =Ha (U +HbY )

Ô⇒ Y −HaHbY =HaU

- Block diagrams 16

• Let me show you how to derive this so you’ll never forget it

• We introduce intermediate variables
XandXtorepresentsignalsT henwewriteequationsforeachrelationship

•• Finally, we substitute and solve for Y in terms of U

• This is much better than memorizing - you can re-derive it anytime

• Notice how the loop gain
HaHbappearsnaturallyinthealgebraF ornegativefeedback, justchangethe + to −

inthesummingjunction

notes



Moving blocks around sum operators

•

U1(s) + H(s) Y (s)

U2(s)

is equivalent to

U1(s) H(s) + Y (s)

H(s) U2(s)

- Block diagrams 17

• This rule shows how we can move blocks past summing junctions

• The key insight is that the same operation must be applied to all inputs

• Here we’ve moved H(s) to operate on both U1 and U2

• This is useful when you want to combine parallel paths

• Remember: what you do to one input, you must do to all inputs

notes

Moving blocks around sum operators

U1(s) H(s) + Y (s)

U2(s)

is equivalent to

U2(s)
1

H(s)

+U1(s) H(s) Y (s)

- Block diagrams 18

• This is a more advanced version of the previous rule

• When moving a block past a summing junction, we need to compensate with its inverse

• Notice how U2 now passes through 1/H(s) to maintain equivalence

• This is useful when you need to combine signals before processing

• Be careful - this only works if H(s) is invertible (no zeros at infinity)

notes



Moving blocks around connections

H(s)U(s) Y (s)

U(s)

is equivalent to

H(s)

1
H(s)

U(s) Y (s)

U(s)

- Block diagrams 19

• This rule shows how to move a branch point past a block

• Similar to the previous rule, we need to compensate with the inverse

• The key idea is that the branched signal must remain unchanged

• This is useful when you need to access the original input signal

• Again, this only works if H(s) is invertible

notes

Moving blocks around connections

H(s)U(s) Y (s)

Y (s)

is equivalent to

H(s)

H(s)

U(s) Y (s)

Y (s)

- Block diagrams 20

• This is the companion to the previous rule - now we’re branching the output

• Here we need to apply the same transfer function to maintain equivalence

• The branched signal must still represent the output Y(s)

• This is useful when you need to feed the output forward

• Notice we don’t need any inverses here - just duplicate the block

notes



Combining the example above to model ẏ = ay + bu

U(s) b
1
s

a

Y (s)

U(s) b
1

s − a
Y (s)

U(s)
b

s − a
Y (s)

- Block diagrams 21

• Now let’s see how all these rules come together in a practical example

• We start with the time-domain differential equation

• First we implement it directly with basic blocks

• Then we apply the feedback reduction rule to simplify

• Finally, we combine the series blocks

• Notice how we end up with exactly the transfer function we’d get by taking Laplace
transforms

• This shows the consistency between time and frequency domain

notes

Self-assessment material

- Block diagrams 1

•

notes



Question 1
transfer function Which of the following block operations has no equivalent
representation in the frequency domain?

1 Multiplication by a constant
2 (correct) Nonlinear transformation by a generic function f(⋅)

3 Summation of signals
4 Integration
5 I do not know

Solution 1: Nonlinear operations like f(y(t)) do not generally have a direct
equivalent in the frequency domain. In contrast, operations like multiplication,
summation, and integration do, as they correspond to algebraic operations in the
Laplace domain.

- Block diagrams 2

Question 2
transfer function What is the equivalent transfer function of two blocks with transfer
functions Ha(s) and Hb(s) connected in series?

1 Ha(s) +Hb(s)

2 Ha(s) −Hb(s)

3 (correct) Ha(s) ⋅Hb(s)

4 Ha(s)/Hb(s)

5 I do not know
Solution 1: Blocks in series multiply: the output of the first is the input of the
second, so the overall transfer function is Ha(s) ⋅Hb(s).

- Block diagrams 3

Question 3
transfer function Which of the following statements about the feedback loop formula

Ha(s)

1 −Ha(s)Hb(s)
is correct?

1 It is only valid for time-domain systems
2 It represents the series connection of two systems
3 (correct) It gives the closed-loop transfer function for a negative feedback loop
4 It requires Hb(s) to be zero
5 I do not know

Solution 1: The formula Ha(s)

1 −Ha(s)Hb(s)
is the standard expression for the

closed-loop transfer function in the case of negative feedback.

- Block diagrams 4

Question 4
transfer function Which operation is equivalent in both time and frequency
domains for block diagrams?

1 Integration
2 Derivation
3 (correct) Multiplication by a constant
4 Nonlinear transformation
5 I do not know

Solution 1: Multiplication by a constant is equivalent in both time and frequency
domains since it does not involve any transformation or differentiation/integration.

- Block diagrams 5



Question 5
transfer function In a parallel connection of two transfer functions Ha(s) and Hb(s),
the resulting system has the transfer function:

1 Ha(s) ⋅Hb(s)

2
Ha(s)

Hb(s)
3 (correct) Ha(s) +Hb(s)

4 Hb(s) −Ha(s)

5 I do not know
Solution 1: In a parallel configuration, the outputs of Ha(s) and Hb(s) are added
together. The resulting transfer function is therefore Ha(s) +Hb(s).

- Block diagrams 6

Recap of the module “Block diagrams”
1 you are suppose to know how to work with block diagrams
2 the rules are quite simple, and can be re-derived by hands

- Block diagrams 7

• the most important messages of this module are likely these ones

notes


	Block diagrams

