Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

what is the superposition principle, and what does it imply

Contents map

developed content units	taxonomy levels
superposition principle	u1, e1
prerequisite content units	taxonomy levels
	ul el

Main ILO of sub-module

"what is the superposition principle, and what does it imply"

Describe the importance of the superposition principle to analyze LTI systems

Starting with graphs

implications/definition of linearity:

- f(x+y) = f(x) + f(y)
- $f(\alpha y) = \alpha f(y)$

- what is the superposition principle, and what does it imply 4

What if we interpret this as an ODE?

 \implies an LTI system, for which

 $\dot{y} = \alpha y$ is solved by $y(t) = y(0) \exp(\alpha t) \quad \forall y(0), \alpha, t$

• $y'(0) = 2 \mapsto y'(t) = 2 \exp(\alpha t)$

⁻ what is the superposition principle, and what does it imply 6

- $y'(0) = 2 \mapsto y'(t) = 2 \exp(\alpha t)$
- $y''(0) = 3 \mapsto y''(t) = 3 \exp(\alpha t)$

⁻ what is the superposition principle, and what does it imply 6

• $y'(0) = 2 \mapsto y'(t) = 2 \exp(\alpha t)$ • $y''(0) = 3 \mapsto y''(t) = 3 \exp(\alpha t)$ • $y'''(0) = 3 + 2 \mapsto y'''(t) = (3 + 2) \exp(\alpha t)$

⁻ what is the superposition principle, and what does it imply 6

• $y'(0) = 2 \mapsto y'(t) = 2 \exp(\alpha t)$ • $y''(0) = 3 \mapsto y''(t) = 3 \exp(\alpha t)$ • $y'''(0) = 3 + 2 \mapsto y'''(t) = (3 + 2) \exp(\alpha t)$

⁻ what is the superposition principle, and what does it imply 6

•
$$y'''(0) = 3 + 2 \mapsto y'''(t) = (3 + 2) \exp(\alpha t)$$

$$y'(0) + y''(0) \mapsto y'(t) + y''(t)$$

Further generalization

• $\{y'(0), u'\} \mapsto y'(t)$ • $\{y''(0), u''\} \mapsto y''(t)$

•
$$\{y''(0), u''\} \mapsto y''(t)$$

• $\{y'(0) + y''(0), u' + u''\} \mapsto y'(t) + y''(t)$

Aiding intuitions with math

Linearity implies that if $\{y', u', y'(0)\}$ and $\{y'', u'', y''(0)\}$ satisfy

$$\begin{cases}
\frac{dy'(t)}{dt} = ay'(t) + bu'(t) \\
y'(0) = y'_{0} \\
\frac{dy''(t)}{dt} = ay''(t) + bu''(t) \\
y''(0) = y''_{0}
\end{cases}$$
(1)

then their sum also satisfies

$$\begin{cases} \frac{d(\alpha'y'(t) + \alpha''y''(t))}{dt} &= a(\alpha'y'(t) + \alpha''y''(t)) + b(\alpha'u'(t) + \alpha''u''(t)) \\ \alpha'y'(0) + \alpha''y''(0) &= \alpha'y'_0 + \alpha''y''_0 \end{cases}$$
(2)

⁻ what is the superposition principle, and what does it imply 8

Rephrasing

Linearity implies that if $\{y', u', y'(0)\}$ and $\{y'', u'', y''(0)\}$ satisfy the ODE then also their sum $\{y' + y'', u' + u'', y'(0) + y''(0)\}$ satisfies the ODE.

Rephrasing

Linearity implies that if $\{y', u', y'(0)\}$ and $\{y'', u'', y''(0)\}$ satisfy the ODE then also their sum $\{y' + y'', u' + u'', y'(0) + y''(0)\}$ satisfies the ODE.

The superposition principle in words

in LTI systems combining inputs and initial conditions produces a total effect that is the linear combination of that effects one would get with the individual causes each acting separately Important: the superposition principle works with any LTI Will be repeated and stated again precisely later on

the proof holds for every system that generalizes $\dot{y} = ay + bu$, i.e., every "linear combination of dots of y = linear combination of dots of u"

assume:

• $\dot{y} = ay + bu$ y(t)

- what is the superposition principle, and what does it imply 11

t

assume:

•
$$\dot{y} = ay + bu$$

•
$$\{u(t) = 0(t), y(0) \neq 0\}$$
 causes $y_{\text{free evolution}}(t)$

.

assume:

- $\dot{y} = ay + bu$
- $\{u(t) = 0(t), y(0) \neq 0\}$ causes $y_{\text{free evolution}}(t)$
- $\{u(t) \neq 0(t), y(0) = 0\}$ causes $y_{\text{forced response}}(t)$

assume:

then $\{u(t) \neq 0(t), y(0) \neq 0\}$ causes $y_{\text{free evolution}}(t) + y_{\text{forced response}}(t)$ - what is the superposition pr

A mnemonic scheme

(only for LTI systems!!)

$$(u, y_0) = (0, y_0) + (u, 0)$$

total response = free evolution + forced response

Discussion: how will the cart move if I use $u(t) = sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal)

Discussion: how will the cart move if I use $u(t) = sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u(t) = 2 sin(\omega t)$?

⁻ what is the superposition principle, and what does it imply 13

Discussion: how will the cart move if I use $u(t) = \sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u(t) = 2\sin(\omega t)$? And what about $u(t) = \sin(\omega' t) + \sin(\omega'' t)$?

⁻ what is the superposition principle, and what does it imply 13

Discussion: how will the cart move if I use $u(t) = \sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u(t) = 2\sin(\omega t)$? And what about $u(t) = \sin(\omega't) + \sin(\omega''t)$? And what about $u(t) = \alpha' \sin(\omega't) + \alpha'' \sin(\omega''t)$?

Discussion: how will the cart move if I use $u(t) = \sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u(t) = 2\sin(\omega t)$? And what about $u(t) = \sin(\omega't) + \sin(\omega''t)$? And what about $u(t) = \alpha' \sin(\omega't) + \alpha'' \sin(\omega''t)$?

Refining the intuitions

Assume to have measured

$$\mathbf{y}'(0), u'(t) \mapsto \mathbf{y}'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto \mathbf{y}''(t)$$

Refining the intuitions

Assume to have measured

$$\mathbf{y}'(0), u'(t) \mapsto \mathbf{y}'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto \mathbf{y}''(t)$$

Saying "this system is linear" means assuming $\forall \alpha', \alpha'' \in \mathbb{R}$

$$\alpha' \mathbf{y}'(0) \alpha' \mathbf{y}''(0), u'(t) \mapsto y'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto y''(t)$$

Refining the intuitions

Assume to have measured

$$\mathbf{y}'(0), u'(t) \mapsto \mathbf{y}'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto \mathbf{y}''(t)$$

Saying "this system is linear" means assuming $\forall \alpha', \alpha'' \in \mathbb{R}$

$$\alpha' \mathbf{y}'(0) \alpha' \mathbf{y}''(0), u'(t) \mapsto y'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto y''(t)$$

thus assuming that from a resting state the input $u(t) = \alpha \sin(\omega_{\alpha} t) + \beta \sin(\omega_{\beta} t)$ causes $y(t) = \alpha y_{\omega\alpha}(t) + \beta y_{\omega\beta}(t)$

Summarizing

Describe the importance of the superposition principle to analyze LTI systems

• it makes us able to say "total = free + forced"

Most important python code for this sub-module

Suggestion

part of the SciPy library (scipy.signal) provides tools for working with LTI systems, including creating transfer functions, state-space representations, and analyzing system responses (stuff that will be seen in the next modules)

Self-assessment material

- what is the superposition principle, and what does it imply $\boldsymbol{1}$

What does the superposition principle imply for LTI systems?

- I: The total response is the product of the free evolution and forced response.
- II: The total response is the sum of the free evolution and forced response.
- III: The total response is independent of the initial conditions.
- IV: The total response is only determined by the input.
- V: I do not know.

Which of the following is a necessary condition for the superposition principle to hold in a system?

- I: The system must be nonlinear.
- II: The system must be linear and time-invariant.
- III: The system must have time-varying parameters.
- IV: The system must be unstable.
- V: I do not know.

What is the free evolution of an LTI system?

- I: The response of the system to a nonzero input with zero initial conditions.
- II: The response of the system to zero input with nonzero initial conditions.
- III: The steady-state response of the system.
- IV: The transient response of the system.
- V: I do not know.

If an LTI system has an input $u(t) = \alpha' u'(t) + \alpha'' u''(t)$ and initial conditions $y(0) = \alpha' y'(0) + \alpha'' y''(0)$, what is the total response y(t)?

Potential answers:

I: $y(t) = \alpha' y'(t) \cdot \alpha'' y''(t)$ II: $y(t) = \alpha' y'(t) + \alpha'' y''(t)$ III: $y(t) = \alpha' y'(t) - \alpha'' y''(t)$ IV: $y(t) = \alpha' y'(t) / \alpha'' y''(t)$ V: I do not know.

What is the forced response of an LTI system?

- I: The response of the system to a nonzero input with zero initial conditions.
- II: The response of the system to zero input with nonzero initial conditions.
- III: The response of the system to a step input.
- IV: The response of the system to a sinusoidal input.
- V: I do not know.

Recap of sub-module

- superposition principle helps logically separating specific causes into specific effects
- linear ODEs \implies superposition principle
- superposition principle \implies "whole = free + forced"
- nonlinear systems WON'T satisfy this principle!

- what is the superposition principle, and what does it imply 8

?