Passer au contenu principal
Si vous continuez à consulter ce site web, vous acceptez nos politiques :
Condizioni di utilizzo e trattamento dei dati
Continuer
x
Français (fr)
English (en)
Français (fr)
Italiano (it)
Vous êtes connecté anonymement
Connexion
Macroarea STEM
Accueil
Calendrier
My Media
Accueil
Calendrier
My Media
Plus
Tout déplier
Tout replier
Ouvrir l’index du cours
2024-SC2651-002PD-2024-SCQ0094119-N0-SC2651
Course Record
Course Record
Résumé de section
Sélectionner l’activité September 30: presentation of the course. Space of Holder and Lipschitz functions. Spaces of C^infty functions.
September 30: presentation of the course. Space of Holder and Lipschitz functions. Spaces of C^infty functions.
Fichier
Sélectionner l’activité October 1: space of test functions (C^\infty_c). Regularization by convolution. DuBois Reymond lemma and 1d variant.
October 1: space of test functions (C^\infty_c). Regularization by convolution. DuBois Reymond lemma and 1d variant.
Fichier
Sélectionner l’activité Oct 2: partitions of units. Boundaries and integration by parts formula
Oct 2: partitions of units. Boundaries and integration by parts formula
Fichier
Sélectionner l’activité October 7: signed distance function and regularity of boundaries. Definition of Radon measures
October 7: signed distance function and regularity of boundaries. Definition of Radon measures
Fichier
Sélectionner l’activité October 8: Caratheodory theorem, total variation measure, Lebesgue Radon Nykodim theorem
October 8: Caratheodory theorem, total variation measure, Lebesgue Radon Nykodim theorem
Fichier
Sélectionner l’activité October 14: the theorem of differentiation of measures. Definition of density. Covering theorem (Vitali, Besikovitch). Computation of the volume of the n dimensional ball
October 14: the theorem of differentiation of measures. Definition of density. Covering theorem (Vitali, Besikovitch). Computation of the volume of the n dimensional ball
Fichier
Sélectionner l’activité October 15: Hausdorff measures.
October 15: Hausdorff measures.
Fichier
Sélectionner l’activité On the Hausdorff dimension of the Cantor set. Possible reference: Falconer, Geometry of Fractal Sets, Cambridge Univ. press, 1985
On the Hausdorff dimension of the Cantor set. Possible reference: Falconer, Geometry of Fractal Sets, Cambridge Univ. press, 1985
Fichier
Sélectionner l’activité October 16: Steiner symmetrization. Isodiametric inequality. |E|\leq H^n_d(E) for every d
October 16: Steiner symmetrization. Isodiametric inequality. |E|\leq H^n_d(E) for every d
Fichier
Sélectionner l’activité On the measurability of subgraphs of measurable functions
On the measurability of subgraphs of measurable functions
Fichier
Sélectionner l’activité October 21: H^n is the Lebesgue measure (end of the proof). Area formula (no proof) H^k corresponds on C^1 -dim. submanifold to the surface measure. Rectifiable sets.
October 21: H^n is the Lebesgue measure (end of the proof). Area formula (no proof) H^k corresponds on C^1 -dim. submanifold to the surface measure. Rectifiable sets.
Fichier
Sélectionner l’activité On sets with H^1(C)=0 and dim_H(C)=1. Purely 1 unrecifiable sets. Reference Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, 2012
On sets with H^1(C)=0 and dim_H(C)=1. Purely 1 unrecifiable sets. Reference Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, 2012
Fichier
Sélectionner l’activité October 22: Riesz (Markov) theorem on Radon measures (no proof).
October 22: Riesz (Markov) theorem on Radon measures (no proof).
Fichier
Sélectionner l’activité Oct 23: distributions and order of a distribution
Oct 23: distributions and order of a distribution
Fichier
Sélectionner l’activité Oct 28: order of a distribution, support of a distribution, distributions of compact support have finite order. Derivatives of distribution. Weak derivatives of functions.
Oct 28: order of a distribution, support of a distribution, distributions of compact support have finite order. Derivatives of distribution. Weak derivatives of functions.
Fichier
Sélectionner l’activité Oct 29: derivative in the sense of distribution and weak derivatives. Examples of functions not admitting wea derivatives. Fundamental solution of a linear diff. operator.
Oct 29: derivative in the sense of distribution and weak derivatives. Examples of functions not admitting wea derivatives. Fundamental solution of a linear diff. operator.
Fichier
Sélectionner l’activité Oct 30: fundamental solutions of the laplacian. If f in R is monotone non decreasing, its derivative in the sense of distribution is a Radon measure
Oct 30: fundamental solutions of the laplacian. If f in R is monotone non decreasing, its derivative in the sense of distribution is a Radon measure
Fichier
Sélectionner l’activité Nov 4: convergence in the sense of distribution. Convolution between a distribution and a test function, main properties. Density.
Nov 4: convergence in the sense of distribution. Convolution between a distribution and a test function, main properties. Density.
Fichier
Sélectionner l’activité Nov 5: conclusion of the proof. Spherical mean property and characterization of harmonic functions. Weyl lemma (harmonic distributions are smooth).
Nov 5: conclusion of the proof. Spherical mean property and characterization of harmonic functions. Weyl lemma (harmonic distributions are smooth).
Fichier
Sélectionner l’activité November 6: Sobolev spaces. Characterization of Sobolev spaces in dimension 1 in terms of absolutely continuous functions.
November 6: Sobolev spaces. Characterization of Sobolev spaces in dimension 1 in terms of absolutely continuous functions.
Fichier
Sélectionner l’activité Nov 11: duals of Sobolev spaces, theorem of Meyers Serrin. Corollary:W^{k,p}_0(\R^n)=W^{k,p}(\R^n)
Nov 11: duals of Sobolev spaces, theorem of Meyers Serrin. Corollary:W^{k,p}_0(\R^n)=W^{k,p}(\R^n)
Fichier
Sélectionner l’activité Nov 12: extension theorem, density of C^\infty(\bar U) in W^{1,p}(U). Proof of the lemma (extension by reflection).
Nov 12: extension theorem, density of C^\infty(\bar U) in W^{1,p}(U). Proof of the lemma (extension by reflection).
Fichier
Sélectionner l’activité Nov 13: extension theorem and trace theorem (no proof). Characterization of W_0^{1,p} no proof. Continuous and compact embeddings. Case n=1.
Nov 13: extension theorem and trace theorem (no proof). Characterization of W_0^{1,p} no proof. Continuous and compact embeddings. Case n=1.
Fichier
Sélectionner l’activité Nov 18: Gagliardo Nirenberg Sobolev embedding. Local case for W_0^{1,p}(U), U bounded.
Nov 18: Gagliardo Nirenberg Sobolev embedding. Local case for W_0^{1,p}(U), U bounded.
Fichier
Sélectionner l’activité Nov 19: local version of GNS inequality and embeddings. Morrey inequality.
Nov 19: local version of GNS inequality and embeddings. Morrey inequality.
Fichier
Sélectionner l’activité Nov 20: local version of Morrey. Generalized Rademacher theorem. Functions in W^{1,\infty}_loc are locally Lipschitz.
Nov 20: local version of Morrey. Generalized Rademacher theorem. Functions in W^{1,\infty}_loc are locally Lipschitz.
Fichier
Sélectionner l’activité Nov 25: conclusion of the proof on characterization of W^1,infty functions. Embeddings for W^{2,p}. Compact embeddings for p>n. Rellich Kondrachov theorem, counterexample for p^*.
Nov 25: conclusion of the proof on characterization of W^1,infty functions. Embeddings for W^{2,p}. Compact embeddings for p>n. Rellich Kondrachov theorem, counterexample for p^*.
Fichier
Sélectionner l’activité Nov 27: Rellich Kondrachov theorem. Main application: W^{1,p} is compactly embedded in L^p.
Nov 27: Rellich Kondrachov theorem. Main application: W^{1,p} is compactly embedded in L^p.
Fichier
Sélectionner l’activité December 2: Harmonic extension. Poincare' inequality (statement)
December 2: Harmonic extension. Poincare' inequality (statement)
Fichier
Sélectionner l’activité December 3: Poincare' inequality. Application: W^{1,n} are BMO functions. An example from calculus of the variations.
December 3: Poincare' inequality. Application: W^{1,n} are BMO functions. An example from calculus of the variations.
Fichier
Sélectionner l’activité Dec 4: conclusion of the example of calculus of variations. Introduction of the space of BV functons.
Dec 4: conclusion of the example of calculus of variations. Introduction of the space of BV functons.
Fichier
Sélectionner l’activité Dec 9: BV norm. LSC of the total variation wrt to L^1 conv. Strong, strict and weak star convergence in BV. Density in strict sense of smooth functions. GNS and Helly theorems.
Dec 9: BV norm. LSC of the total variation wrt to L^1 conv. Strong, strict and weak star convergence in BV. Density in strict sense of smooth functions. GNS and Helly theorems.
Fichier
Sélectionner l’activité Dec 10: BV functions in dimension 1
Dec 10: BV functions in dimension 1
Fichier
Sélectionner l’activité Dec 11: sets of finite perimeter
Dec 11: sets of finite perimeter
Fichier
Sélectionner l’activité December 16: compactness for perimeters. The Plateau problem
December 16: compactness for perimeters. The Plateau problem
Fichier