Vai al contenuto principale
Se prosegui nella navigazione del sito, ne accetti le politiche:
Condizioni di utilizzo e trattamento dei dati
Prosegui
x
Italiano (it)
English (en)
Français (fr)
Italiano (it)
Ospite
Login
Macroarea STEM
Home
Calendario
Unipd
Portale Didattica
Orari
Uniweb
Webmail
My Media
Home
Calendario
Unipd
Portale Didattica
Orari
Uniweb
Webmail
My Media
Altro
Espandi tutto
Minimizza tutto
Apri indice del corso
FUNCTIONS THEORY
Course record
Course record
Schema della sezione
Seleziona attività 29/09: Space of continuous functions, and sup norm. Ascoli Arzela' compactness theorem. The space of test functions
29/09: Space of continuous functions, and sup norm. Ascoli Arzela' compactness theorem. The space of test functions
File
Seleziona attività 6/10: test functions are dense in L^p. DuBois Reymond lemma (added a page)
6/10: test functions are dense in L^p. DuBois Reymond lemma (added a page)
File
Seleziona attività 7/10: partitions of unity. Open sets of class C^k, signed distance, exterior and interior sphere condition
7/10: partitions of unity. Open sets of class C^k, signed distance, exterior and interior sphere condition
File
Seleziona attività 8/10: integration on sphere formula. Borel measures and Radon measures.
8/10: integration on sphere formula. Borel measures and Radon measures.
File
Seleziona attività 13/10: Positive linear functionals on C_c(U). Riesz theorem on Radon measure. Weak compactness in the space of Radon measure. Recall of L^p weak, weak^* compactness theorems.
13/10: Positive linear functionals on C_c(U). Riesz theorem on Radon measure. Weak compactness in the space of Radon measure. Recall of L^p weak, weak^* compactness theorems.
File
Seleziona attività 14/10: embedding of L^1 in the space of signed Radon measures and weak compactness thm; Lebesgue theorem, Meaure theoretic boundary and topological boundary.
14/10: embedding of L^1 in the space of signed Radon measures and weak compactness thm; Lebesgue theorem, Meaure theoretic boundary and topological boundary.
File
Seleziona attività 15/10: absolutely continuous measures and singular measures, density of an a.c. measuure, Lebesgue-Radon-Nikodym decomposition. Hausdorff measures.
15/10: absolutely continuous measures and singular measures, density of an a.c. measuure, Lebesgue-Radon-Nikodym decomposition. Hausdorff measures.
File
Seleziona attività 20/10:Hausdorff dimension of a set. Example of the Cantor set and devil's staircase (without proof of the Hausdorff dimension)
20/10:Hausdorff dimension of a set. Example of the Cantor set and devil's staircase (without proof of the Hausdorff dimension)
File
Seleziona attività 21/10: Isodiametric inequality in R^n by Steiner symmetrization. Proof that H^n is Lebesgue on R^n
21/10: Isodiametric inequality in R^n by Steiner symmetrization. Proof that H^n is Lebesgue on R^n
File
Seleziona attività 22/10: H^k rectifiable sets.Definition of distribution. Order of a distribution.
22/10: H^k rectifiable sets.Definition of distribution. Order of a distribution.
File
Seleziona attività 27/10: order of a distribution, example of distributions, principal value. Derivative of a distribution
27/10: order of a distribution, example of distributions, principal value. Derivative of a distribution
File
Seleziona attività 28/10: weak derivatives and derivatives in the sense of distributions.
28/10: weak derivatives and derivatives in the sense of distributions.
File
Seleziona attività 29/10: Cantorian measures. Convolution of a distribution and a test function
29/10: Cantorian measures. Convolution of a distribution and a test function
File
Seleziona attività Cantor function (Ambrosio, Fusco, Pallara book)
Cantor function (Ambrosio, Fusco, Pallara book)
File
Seleziona attività 3/11: density of test functions in the space of distributions. Fundamental solution of a differential operator.
3/11: density of test functions in the space of distributions. Fundamental solution of a differential operator.
File
Seleziona attività 4/11: Fundamental solution of the laplacian. Introduction to Sobolev spaces.
4/11: Fundamental solution of the laplacian. Introduction to Sobolev spaces.
File
Seleziona attività 4/11 problem session
4/11 problem session
File
Seleziona attività 5/11: Sobolev spaces in dimension 1.
5/11: Sobolev spaces in dimension 1.
File
Seleziona attività 17/11: density of smooth functions. Gagliardo, Nirenberg, Sobolev inequality.
17/11: density of smooth functions. Gagliardo, Nirenberg, Sobolev inequality.
File
Seleziona attività 18 and 19 november: GNS inequality and Poincare' inequality. First eigenvalue of the laplacian with Dirichlet bdry conditions (Ref. Evans PDE ch, 6, thm 2)
18 and 19 november: GNS inequality and Poincare' inequality. First eigenvalue of the laplacian with Dirichlet bdry conditions (Ref. Evans PDE ch, 6, thm 2)
File
Seleziona attività 24/11: Morrey inequality and consequences
24/11: Morrey inequality and consequences
File
Seleziona attività 25/11: Lipschitz continuous functions and W^{1, infty}, Rademacher theorem
25/11: Lipschitz continuous functions and W^{1, infty}, Rademacher theorem
File
Seleziona attività 26/11: extension and traces for Sobolev functions
26/11: extension and traces for Sobolev functions
File
Seleziona attività 1/12: Continuous embeddings for W^{1,p}(U), U bdd of class C^1. Compact embeddings.
1/12: Continuous embeddings for W^{1,p}(U), U bdd of class C^1. Compact embeddings.
File
Seleziona attività 2/12: proof of Rellich-Kondrachov theorem. Corollary (W^{1,p} is compactly embedded in L^p)).
2/12: proof of Rellich-Kondrachov theorem. Corollary (W^{1,p} is compactly embedded in L^p)).
File
Seleziona attività 3/12: a classical example from Calculus of Variations. Poincare' inequality
3/12: a classical example from Calculus of Variations. Poincare' inequality
File
Seleziona attività 9/12: W^1,n is continuously embedded in BMO. The harmonic extension of a W^1,2 function.
9/12: W^1,n is continuously embedded in BMO. The harmonic extension of a W^1,2 function.
File
Seleziona attività 10/12: the space of BV functions
10/12: the space of BV functions
File
Seleziona attività 15/12:strong convergence, strict convergence and weak star convergence in BV. BV functions in dimension 1.
15/12:strong convergence, strict convergence and weak star convergence in BV. BV functions in dimension 1.
File
Seleziona attività 16/12: BV functions in dim>1: density in strict sense of W^{1,1}, GNS inequality, compactness theorem
16/12: BV functions in dim>1: density in strict sense of W^{1,1}, GNS inequality, compactness theorem
File
Seleziona attività 16/12: problem session
16/12: problem session
File
Seleziona attività 17/12: Sets of finite perimeter. Main properties.
17/12: Sets of finite perimeter. Main properties.
File