Proposition: Let f: IR > IR monotone nondecreasing function (then & EL'ex (12) fince it lies a countable number of jumps). $[x>y \Rightarrow R(x) > P(y)]$ Let te (4)= I fodx. There (Te) is a positive distribution (that is: the derivative in the ceuse of distributions of a nonotone vou de creasing function is positive) In particular (TE) has order O => FIREM(IR) (TE) =Tu. Let $\phi \in \mathcal{C}^{\circ}(\mathbb{R})$ BASIC OBSERVEN - $\varphi(x) = \varphi'(x)$ UNIFORMLY $\varphi(x+h) = \varphi(x) + \varphi'(x) \cdot h + \varphi''(\xi_{x,x+h}) \frac{g^2}{2}$ |Q(x+4)-q(x) _ q(x) ≥ & ||φ"||ω lim || \(\phi \text{(x+le)} - \phi(x) \) - \(\phi \text{(x)} \) \(\phi \text{(x)} \)

We want to prove that
$$(T_{\varphi})^{l}(\phi) \geq 0$$
.

$$(T_{\varphi})^{l}(\phi) = -\int_{1R} f(x) \, \phi^{l}(x) \, dx = -\int_{1R} \lim_{\alpha \to 0} \phi \frac{(x+\theta)-\phi(x)}{\alpha} \, f(x) \, dx$$

| by uniform convergence (released downroted convergence)

$$= -\lim_{\alpha \to 0^{+}} \int_{1R} f(x) \, \phi(x+h) - \phi(x) = \lim_{\alpha \to 0^{+}} \int_{1R} f(x)\phi(x) - f(x)\phi(x+h)$$

$$= \lim_{\alpha \to 0^{+}} \int_{1R} f(x)\phi(x) \, dx - \int_{1R} f(x-h)\phi(x) \, dx = \lim_{\alpha \to 0^{+}} \int_{1R} f(x)\phi(x) \, dx = \lim_{\alpha \to 0^{+}} \int_{1R} f(x)-f(x-h)\int_{1R} \phi(x) \, dx \geq 0$$

$$= \lim_{\alpha \to 0^{+}} \int_{1R} f(x)-f(x-h)\int_{1R} \phi(x) \, dx \geq 0$$

Since f is monotone non decreasing $x \geq x-h$

Let $\phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ $\phi \geq 0$.

Let
$$C = \bigcap$$
 Con Conton set

 $Co = [0i]$ $C_1 = \frac{1}{3}C_0 \cup \left(\frac{1}{3}C_0 + \frac{2}{3}\right)$ $C_{n+1} = \frac{1}{3}C_n \cup \left(\frac{1}{3}C_n + \frac{2}{3}\right)$.

 $f: [0i] \rightarrow [0,i]$ Conton function (Devil's STAIRCASE)

 $f(0) = 0$ $f(1) = 1$ (so f can be extended to $f(0) = 0$ $f(1) = 1$ (so f can be extended to $f(0) = 0$ $f(1) = 1$ (so f can be $f(0) = 1$ $f(0) = 0$ $f(0) = 1$ $f(0) = 0$ $f(0) = 1$ $f(0) = 1$

Another way to construct it $f_0(x) = 1$ $x \ge 1$ 20: 1R→12 fo(x)=0 x ≤0 and to linear. P(:1P→1P Pi=fo on IRICo $f_1 = \frac{1}{2} \text{ in } C_0 \setminus C_1$ f, linear and continuous $f_2 = f_1 \text{ on } | P(C_1) + f_2(x) = \begin{cases} (\frac{1}{2})^2 & x \in (C_1) \cdot (\frac{1}{2}) \cdot (C_2) \cdot (C_1) \cdot (\frac{1}{2}) \\ + \text{ off we} \end{cases}$ and so on $f_{m}(x) = f_{m-1}(x)$ on $IR \setminus f_{m}(x) = \frac{1}{2} \int_{x-1}^{x-1} f_{m}(x) = \frac{1}{2} \int_{$ fm(x) = fm-1(x) on 121 Cm-1 + off ne

fn(x)=fk(x) $\forall x \in (R \setminus C_k)$ (and they are constant) A W > K||fm+1 - fm||∞ = \frac{1}{3} (\frac{1}{2})^{n+1} futi = fn on R Cn. by definition $C_{n} \left(\frac{1}{2}\right)^{n+1}$ just look to [o, []] CCn (for all the other interals is the same) 0 (7) (M/3) m fm (\frac{1}{3})^n - fm+1 (\frac{1}{3}) = (\frac{1}{2})^n (\frac{1}{3}) 2 (1/3) 4+1 sequence in C[0,1], 11.11. In is a Couchy

(f EC(01), monohous non decreosing, constant on intervals not intersecting () fm -> f Coutor fuction. IRIC is win of intervals and ICI=0 6, (x) = 0 d-6-Nonetheless $(T_{\xi})' \neq 0$ Since if $(T_{\xi})' = 0$ \Rightarrow conclearly of DB-R $0 = (T_{\xi})'(\phi) = -\int_{\mathbb{R}} \xi \, d \cdot d \times \quad \forall \, \phi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}) \quad \Rightarrow \quad \text{consheut } \, q \cdot \theta = 0$ (NOT TRUE!) - (NOT TSo $\xi' = 0$ a.e but $(T\xi)' \neq 0$ $(T\xi)' = T_{\mu}$ $\exists \mu$ since $(T\xi)'$ is positive and so lies order 0.

 $A \phi \in G_{\infty}^{\infty}(\Omega) \qquad (b) \qquad (c) \qquad (c) \qquad (d) \qquad ($

µ is supported on C (Tuis Exported.on C). Let A \subseteq IR open set such that An $C = \phi \Longrightarrow$ take $\phi \in \mathcal{C}_{c}^{\infty}(IR)$ A. $\int \phi' f dx = -\int \phi f' dx = 0$ Since fis constant on every connected component of A nucle that opp of CA. supp m = C R = 1R/C U C (C(=0 µ (1R/C)=0 Jo mus of to to to pies sing sing of μ is the derivative in the sense of distribitions of the Coulon function.

(mes one supported ou a set of meanure D, which is
couloniau measure the deviative in the sense of distribution of a function

f continuous suith \$!=0 a.e)

More generally it is possible to more the following: Let f be a montone non decreasing function in R

then the deviative in the sense of distributions of f is a Radon measure je such that µ = Mac + M; + Mc Mac <2 & and the density of plac is f' (derivative a.e of f) -> fac(x) = 5 / (+) dt + fac(0) Mj + Mc = singular part where hxky are the jumps $Mi = \begin{cases} \begin{cases} \xi(x_k^+) - \xi(x_k^-) \end{cases} \delta_{x_k} \end{cases}$ of & (COUNTABLY MANY) $f_j(x) = \sum_{k, x_k \leq x} (f(x_k) - f(x_k))$ $\mu_c = contonion part = derivative in the sense of$ distribution of fc, continuous usu decreasing function fc = 0 Q.E. L. f. f; is a continuous function, shel usu decreosing "factfc. & contrueous

PRODUCT of CONVOLUTION TEDI(U), PECCIRM) -> XXE IRM $\phi^{x}(y) := \phi(x-y)$ $\nabla_{\varphi} = \text{open set in } \mathbb{R}^m = \{ x \in \mathbb{R}^m \mid x - y \in \mathcal{V} \}$ ty e supp & y XCV4 => X-supp & = U (Vp can also be empty!) If $V_{\phi} \neq \phi$, if $X \in V_{\phi} = 0$ supp $\phi^{X} \subseteq V$ in the definition $Y \in V_{\phi}$ $Y \in V_$ sup $\phi^{\times} \in \mathcal{O}$ $\phi^{\times} \in \mathcal{C}^{\circ}_{\circ}(\mathcal{O})$ If x e Vb => We define $\forall x \phi(x) := \forall (\phi^x) \forall x \in \forall \phi$. $T \times \phi : V \to IR$ it is a function! $\Gamma : f \cup = IR^n \to V_{\phi} = IR^n$

Obe,
$$f \in L_{eoc}^{\Lambda}(U)$$
 $T = te$
 $T * \varphi(x) = T(\varphi^{X}) = te(\varphi^{X}) = \int f(y) \varphi^{X}(y) dy =$
 $= \int f(y) \varphi(x-y) dy = f * \varphi(x)$

Proposition

1) $T * \varphi \in C(V\varphi)$ $X_{M} \longrightarrow X \text{ in } V_{\varphi} = \varphi^{X_{M}} \longrightarrow \varphi^{X} \text{ in } C_{c}^{\infty}(U)$
 $\Rightarrow T(\varphi^{X_{M}}) \longrightarrow T(\varphi^{X_{M}}) \Rightarrow T_{X} \varphi(x_{M}) \longrightarrow T_{X} \varphi(x)$

2) S_{0} is the unit of convolution

 $S_{0} * \varphi(x) = S_{0}(\varphi^{X}) = S_{0}(\varphi(x-v)) = \varphi(x-0) = \varphi(x)$

3) $\forall \alpha \in N^{M}$
 $D^{\alpha}(T * \varphi)(x) = (D^{\alpha}T) * \varphi(x) = [T * (D^{\alpha}\varphi)](x)$
 $\Rightarrow T_{X} \varphi \in C^{\infty}(V_{\varphi})$.

$$\begin{aligned}
&\text{preof} \quad \alpha = e_1 \quad \times \in V_{\phi} = \int x + b \cdot e_1 \in V_{\phi} \quad \text{def} \quad \text{def} \quad \text{def} \quad \\
&\text{T}\left(\frac{b}{b} \times + b \cdot e_1\right) - T\left(\frac{b}{b}^{x}\right) = T\left(\frac{b}{b} \times + b \cdot e_1 - \frac{b}{b}^{x}\right) \\
&\text{Lim} \quad \frac{T \times \phi\left(x + b \cdot e_1\right) - T \times \phi\left(x\right)}{b} = T\left(\frac{b}{b} \times \frac{b}{b}^{x}\right) = \frac{b}{b} \left(x - \frac{b}{b}\right) \\
&\text{Lim} \quad \frac{T \times \phi\left(x + b \cdot e_1\right) - T \times \phi\left(x\right)}{b} = T\left(\frac{b}{b} \times \frac{b}{b}\right) = \frac{b}{b} \left(x - \frac{b}{b}\right) \\
&\text{Lim} \quad \frac{T \times \phi\left(x + b \cdot e_1\right) - T \times \phi\left(x\right)}{b} = T\left(\frac{b}{b} \times \frac{b}{b}\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \times \left(x\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \times \left(x\right) \times \left(x\right) \times \left(x\right) \times \left(x\right) \\
&= \left(1 \times \frac{b}{b} \times \frac{b}{b}\right) \times \left(x\right) \times \left(x\right)$$