Master Degree in Computer Engineering

Final Exam for

Automata, Languages and Computation
July 4th, 2024

1. [4 points] Consider the regular expression $R=(\boldsymbol{a} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{a})^{*} \emptyset(\boldsymbol{a} \boldsymbol{a})$. Convert R into an equivalent ϵ-NFA using the construction provided in the textbook, and report all the intermediate steps. Important: do not simplify the regular expression R before applying the construction.
2. [9 points] Let $\Sigma=\{a, b, c\}$. For $w \in \Sigma^{*}$ and $X \in \Sigma$, we write $\#_{X}(w)$ to denote the number of occurrences of X in w. Consider the following languages

$$
\begin{aligned}
& L_{1}=\left\{w \mid w \in \Sigma^{*}, \#_{a}(w)=\#_{b}(w)=\#_{c}(w)\right\} ; \\
& L_{2}=\left\{w \mid w \in \Sigma^{*}, \#_{a}(w)=\#_{c}(w)\right\} .
\end{aligned}
$$

(a) Prove that L_{1} is outside of CFL.
(b) Prove that L_{2} is in CFL.
(c) Prove that L_{2} is not in REG.
3. [5 points] Consider the CFG G implicitly defined by the following productions:

$$
\begin{aligned}
& S \rightarrow A A B|A B B| B B B \\
& A \rightarrow a A B \mid b B B \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

Perform on G the transformations indicated below, that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.
(a) Eliminate the ε-productions
(b) Eliminate the unary productions
(c) Eliminate the useless symbols
(d) Produce a CFG in Chomsky normal form equivalent to G.
4. [5 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
(a) Let L_{1} be a language in REG with L_{1} non-finite, and let L_{2} be a language in CFL \backslash REG. The language $L_{1} \cap L_{2}$ may be in CFL \backslash REG.
(b) Let L_{1} be a language in REG with L_{1} non-finite, and let L_{2} be a language in CFL \backslash REG. The language $L_{1} \cap L_{2}$ may be in REG.
(c) Let L_{1}, L_{2} be languages in CFL. The language $L_{1} \cap L_{2}$ belongs to \mathcal{P}, the class of languages that can be recognized in polynomial time by a TM.
(d) Let R be the string reversal operator, which we extend to languages. Let L be a language in REC. Then L^{R} belongs to REC.
5. [4 points] Define the diagonalization language L_{d}. Show that L_{d} is not an RE language, using the proof reported in the textbook.
6. [6 points] Consider the following property of the RE languages defined over the alphabet $\Sigma=\{0,1\}$:

$$
\mathcal{P}=\{L \mid L \in \mathrm{RE}, \text { every string in } L \text { has even length }\}
$$

and define $L_{\mathcal{P}}=\{\operatorname{enc}(M) \mid L(M) \in \mathcal{P}\}$.
(a) Use Rice's theorem to show that $L_{\mathcal{P}}$ is not in REC.
(b) Prove that $L_{\mathcal{P}}$ is not in RE.

