
Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation

January 26th, 2022

1. [5 points] Let E be a regular expression and let L(E) be the generated language. Let R be the
string reversal operator, extended to languages in the usual way. Using structural induction, construct
a regular expression ER such that L(ER) = (L(E))R, and prove this relation.

Solution

The required construction can be found in Chapter 4 of the textbook, Theorem 4.11.

2. [8 points] Consider the following languages, defined over the alphabet Σ = {a, b, c}

L1 = {w | w = apbqcr, p, q, r ≥ 1, p = r = 2q} ;

L2 = {w | w = apbqcr, p, q, r ≥ 1, p + r = 2q} .

State whether L1 and L2 are context-free languages, and motivate your answers.

Solution

(a) L1 is not a context-free language. To prove this statement, we use the pumping lemma for
context-free languages. Let us start by reformulating the definition of the language as L1 =
{w | w = a2qbqc2q, q ≥ 1}. Let N be the pumping lemma constant. We choose the string
z = a2NbNc2N ∈ L1 and consider all possible factorizations z = uvwxy satisfying the conditions
|v| + |x| ≥ 1 and |vwx| ≤ N . Because of the latter condition, we have that vx can contain
occurrences of at most two symbols from Σ, and these two symbols can be either a and b or else
b and c, but not a and c. We separately discuss all possible cases in what follows.

• If vx contains at most one symbol X from Σ, the string uvkwxky with k = 0 will not belong
to L1, because there will be some mismatch in the length of the three blocks of a’s, b’s and c’s.

• If v contains only X and y contains only Y , X and Y from Σ such that X 6= Y , then there
must be a symbol Z ∈ Σ such that Z does not occur in v and in x. Again, the string uvkwxky
with k = 0 will not belong to L1, because there will be some mismatch in the length of the
three blocks.

• If v contains two (distinguishable) symbols X and Y from Σ, it is easy to see that any string
uvkwxky with k ≥ 2 will not belong to L1, because of alternating occurrences of X and Y .
A similar argument holds if x contains two symbol from Σ.

We thus conclude that L1 is not a context-free language.

(b) L2 is a context-free language. To see this, we reformulate the definition of the language as
L2 = L′2 ∪ L′′2, where

L′2 = {w | w = apbqcr, p, q, r ≥ 1, p + r = 2q, p is even} ;

L′′2 = {w | w = apbqcr, p, q, r ≥ 1, p + r = 2q, p is odd} .

We now define CFGs G′ and G′′ such that L(G′) = L′2 and L(G′′) = L′′2. Our claim then follows
from the closure of context-free languages under the union operator. Grammar G′ is implicitly
defined by the following productions:

S → S1S2

S1 → aaS1b | aab
S2 → bS2cc | bcc

Grammar G′′ is implicitly defined by the following productions:

S → S1S2

S1 → aaS1b | a
S2 → bS2cc | bc

3. [5 points] Consider the CFG G implicitly defined by the following productions:

S → ABA | BAB

A→ aA | bB
B → b | ε

Perform on G the following transformations that have been specified in the textbook, in the given
order. Report the CFGs obtained at each of the intermediate steps.

(a) Eliminate the ε-productions

(b) Eliminate the unary productions

(c) Eliminate the useless symbols

(d) Produce a CFG in Chomsky normal form equivalent to G.

Solution

We start by observing that ε 6∈ L(G), therefore we can construct a new CFG in Chomsky normal form
that is equivalent to G. All of the algorithms that need to be applied to the grammar G are reported
in Chapter 7 of the textbook.

(a) The set of nullable variables of G is n(G) = {B}. After elimination of the ε-productions we
obtain the intermediate CFG G1

S → ABA | AA | BAB | AB | BA | A
A→ aA | bB | b
B → b

(b) The only unary production in G1 is S → A. Thus the set of unary pairs of G1 is

u(G1) = {(S,A)} ∪ {(X,X) | X ∈ {S,A,B}}.

After elimination of the unary productions we obtain the intermediate CFG G2

S → ABA | AA | BAB | AB | BA | aA | bB | b
A→ aA | bB | b
B → b

(c) All nonterminals in G2 are reachable and generating, that is, there are no useless nonterminals
in G2. Therefore this step does not change the intermediate CFG obtained at the previous step.

(d) The construction of a CFG in Chomsky normal form from G2 proceeds in two steps. The first
step eliminates terminal symbols in the right-hand side of the productions of G2, in case they
appear along with some other symbols. To do this we introduce new nonterminal symbols Ca, Cb

and produce the intermediate CFG G3

S → ABA | AA | BAB | AB | BA | CaA | CbB | b
A→ CaA | CbB | b
B → b

Ca → a

Cb → b

The second step factorizes productions of G3 having right-hand side of length larger than two.
To do this we introduce new nonterminal symbols D,E and produce the final CFG G4

S → AD | AA | BE | AB | BA | CaA | CbB | b
D → BA

E → AB

A→ CaA | CbB | b
B → b

Ca → a

Cb → b

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) If L1 and L2 are not in CFL, then the language L1 ∩ L2 cannot be in CFL.

(b) If L1 ∪ L2 is a regular language, then also L1 and L2 are regular languages.

(c) Let Σ be some fixed alphabet and let Li, i ≥ 1, be finite languages over Σ. Then the language

L = ∪∞i=1 Li

is always a regular language.

(d) The class P of languages that can be recognized in polynomial time by a TM is closed under
intersection with regular languages.

Solution

(a) False. Consider the alphabet Σ = {a, b, c} and the counterexample L1 = {anbnan | n ≥ 1},
L2 = {bnanbn | n ≥ 1}. It is easy to show that L1 and L2 are not in CFL, using the pumping
lemma. But the language L1∩L2 is the empty language, which is a regular language and therefore
a CFL as well.

(b) False. Consider the alphabet Σ = {a, b} and the counterexample L1 = {w | w ∈ Σ∗, #a(w) =
#b(w)}, L2 = {w | w ∈ Σ∗, #a(w) 6= #b(w)}. It is easy to see that L1 ∪ L2 = Σ∗ and thus a
regular language. However, L1 and L2 are not regular languages.

(c) False. Consider the alphabet Σ = {a, b} and, for each i ≥ 1, the language Li = {aibi}. Each
Li contains exactly one string, therefore each Li is a finite language. However, L = ∪∞i=1 Li =
{anbn | n ≥ 1}, which is not a context-free language and therefore not a regular language.

(d) True. Let L1 be an arbitrary language in P. By definition of P, there exists some TM M1

such that L(M1) = L1 and M1 processes its input in polynomial time. Let also L2 be a regular
language. It is not difficult to devise a TM M2 that simulates a DFA for L2 and that runs in
polynomial time. We can now construct a TM M that, given as input a string w, simulates M1

and M2 on w in polynomial time. M accepts if both M1 and M2 accept, and rejects otherwise.
This shows that the intersection language L1∩L2 is in P. Since L1 and L2 were chosen arbitrarily,
we have shown that the class P is closed under intersection with regular languages.

5. [9 points] For a property P of the RE languages, define LP = {enc(M) | L(M) ∈ P}.

(a) Let k be some fixed natural number with k > 1. Consider the following properties of the RE
languages defined over the alphabet Σ = {0, 1}:

P<k = {L | L ∈ RE, |L| < k} ;

P≥k = {L | L ∈ RE, |L| ≥ k} .

Assess whether each of the languages LP<k
and LP≥k

belongs to the classes REC, RErREC, or
else does not belong to RE.

(b) Let enc(M1,M2) be a binary string representing some fixed encoding of TMs M1,M2. Consider
the following language, where ‘·’ denotes the concatenation operation between languages:

L = {enc(M1,M2) | |L(M1) · L(M2)| < k}.

Prove that L does not belong to the class RE.

Solution

(a) Language LP≥k
is not in REC. To prove this statement, we apply Rice’s theorem and show that

property P≥k is not trivial. First, Σ∗ is in RE and has more than k strings. Therefore we have
Σ∗ ∈ P≥k and P≥k is not empty. Second, the empty language ∅ is in RE and has fewer than k
strings, since k ≥ 1. Therefore we have ∅ 6∈ P≥k, and P≥k does not contain every RE language.
Since P≥k is not trivial, we can conclude that LP≥k

is not in REC, according to Rice’s theorem.

We now prove that LP≥k
is in RE. To this end, we specify a nondeterministic TM N such that

L(N) = LP≥k
. Let enc(M) be the input to N .

• Using nondeterminism, N guesses k different strings wi ∈ Σ∗, 1 ≤ i ≤ k.

• For each i = 1, . . . , k in the given order, N simulates M on input wi.

• If any of the k simulations above does not halt, then N does not halt as well.

• If all of the k simulations halt, N accepts in case every simulation reaches a final state, and
rejects otherwise.

It is not difficult to see that L(N) = LP≥k
. Since nondeterministic TMs are equivalent to TMs,

we conclude that LP≥k
is in RE.

Consider now the language LP<k
. We observe that LP<k

is the complement language of LP≥k

with respect to Σ∗. Since LP≥k
is in RErREC, from a well-known property we conclude that

LP<k
cannot be in RE.

(b) Language L is not in RE. To prove this statement, we use the fact that LP<k
is not in RE, as

shown in (a), and define a reduction LP<k
≤m L.

We need to map instances enc(M) of LP<k
into instances enc(M1,M2) of L. We set M1 = M and

M2 = Mε, where Mε is any TM that recognizes the language {ε}. The following chain of logical
equivalences shows that the construction represents a valid reduction:

enc(M) ∈ LP<k
iff |L(M)| < k (definition of P<k)
iff |L(M) · {ε}| < k (definition of concatenation)
iff |L(M1) · L(Mε)| < k (definition of our reduction)
iff enc(M1,M2) ∈ L (definition of L) .

