Master Degree in Computer Engineering

Final Exam for

Automata, Languages and Computation
January 26th, 2022

1. [5 points] Let E be a regular expression and let $L(E)$ be the generated language. Let R be the string reversal operator, extended to languages in the usual way. Using structural induction, construct a regular expression E^{R} such that $L\left(E^{R}\right)=(L(E))^{R}$, and prove this relation.

Solution

The required construction can be found in Chapter 4 of the textbook, Theorem 4.11.
2. [8 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b, c\}$

$$
\begin{aligned}
& L_{1}=\left\{w \mid w=a^{p} b^{q} c^{r}, p, q, r \geq 1, p=r=2 q\right\} \\
& L_{2}=\left\{w \mid w=a^{p} b^{q} c^{r}, p, q, r \geq 1, p+r=2 q\right\} .
\end{aligned}
$$

State whether L_{1} and L_{2} are context-free languages, and motivate your answers.

Solution

(a) L_{1} is not a context-free language. To prove this statement, we use the pumping lemma for context-free languages. Let us start by reformulating the definition of the language as $L_{1}=$ $\left\{w \mid w=a^{2 q} b^{q} c^{2 q}, q \geq 1\right\}$. Let N be the pumping lemma constant. We choose the string $z=a^{2 N} b^{N} c^{2 N} \in L_{1}$ and consider all possible factorizations $z=u v w x y$ satisfying the conditions $|v|+|x| \geq 1$ and $|v w x| \leq N$. Because of the latter condition, we have that $v x$ can contain occurrences of at most two symbols from Σ, and these two symbols can be either a and b or else b and c, but not a and c. We separately discuss all possible cases in what follows.

- If $v x$ contains at most one symbol X from Σ, the string $u v^{k} w x^{k} y$ with $k=0$ will not belong to L_{1}, because there will be some mismatch in the length of the three blocks of a 's, b 's and c 's.
- If v contains only X and y contains only Y, X and Y from Σ such that $X \neq Y$, then there must be a symbol $Z \in \Sigma$ such that Z does not occur in v and in x. Again, the string $u v^{k} w x^{k} y$ with $k=0$ will not belong to L_{1}, because there will be some mismatch in the length of the three blocks.
- If v contains two (distinguishable) symbols X and Y from Σ, it is easy to see that any string $u v^{k} w x^{k} y$ with $k \geq 2$ will not belong to L_{1}, because of alternating occurrences of X and Y. A similar argument holds if x contains two symbol from Σ.
We thus conclude that L_{1} is not a context-free language.
(b) L_{2} is a context-free language. To see this, we reformulate the definition of the language as $L_{2}=L_{2}^{\prime} \cup L_{2}^{\prime \prime}$, where

$$
\begin{aligned}
& L_{2}^{\prime}=\left\{w \mid w=a^{p} b^{q} c^{r}, p, q, r \geq 1, p+r=2 q, p \text { is even }\right\} ; \\
& L_{2}^{\prime \prime}=\left\{w \mid w=a^{p} b^{q} c^{r}, p, q, r \geq 1, p+r=2 q, p \text { is odd }\right\} .
\end{aligned}
$$

We now define CFGs G^{\prime} and $G^{\prime \prime}$ such that $L\left(G^{\prime}\right)=L_{2}^{\prime}$ and $L\left(G^{\prime \prime}\right)=L_{2}^{\prime \prime}$. Our claim then follows from the closure of context-free languages under the union operator. Grammar G^{\prime} is implicitly defined by the following productions:

$$
\begin{aligned}
S & \rightarrow S_{1} S_{2} \\
S_{1} & \rightarrow a a S_{1} b \mid a a b \\
S_{2} & \rightarrow b S_{2} c c \mid b c c
\end{aligned}
$$

Grammar $G^{\prime \prime}$ is implicitly defined by the following productions:

$$
\begin{aligned}
S & \rightarrow S_{1} S_{2} \\
S_{1} & \rightarrow a a S_{1} b \mid a \\
S_{2} & \rightarrow b S_{2} c c \mid b c
\end{aligned}
$$

3. [5 points] Consider the CFG G implicitly defined by the following productions:

$$
\begin{aligned}
& S \rightarrow A B A \mid B A B \\
& A \rightarrow a A \mid b B \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

Perform on G the following transformations that have been specified in the textbook, in the given order. Report the CFGs obtained at each of the intermediate steps.
(a) Eliminate the ε-productions
(b) Eliminate the unary productions
(c) Eliminate the useless symbols
(d) Produce a CFG in Chomsky normal form equivalent to G.

Solution

We start by observing that $\varepsilon \notin L(G)$, therefore we can construct a new CFG in Chomsky normal form that is equivalent to G. All of the algorithms that need to be applied to the grammar G are reported in Chapter 7 of the textbook.
(a) The set of nullable variables of G is $n(G)=\{B\}$. After elimination of the ε-productions we obtain the intermediate CFG G_{1}

$$
\begin{aligned}
& S \rightarrow A B A|A A| B A B|A B| B A \mid A \\
& A \rightarrow a A|b B| b \\
& B \rightarrow b
\end{aligned}
$$

(b) The only unary production in G_{1} is $S \rightarrow A$. Thus the set of unary pairs of G_{1} is

$$
u\left(G_{1}\right)=\{(S, A)\} \cup\{(X, X) \mid X \in\{S, A, B\}\}
$$

After elimination of the unary productions we obtain the intermediate CFG G_{2}

$$
\begin{aligned}
& S \rightarrow A B A|A A| B A B|A B| B A|a A| b B \mid b \\
& A \rightarrow a A|b B| b \\
& B \rightarrow b
\end{aligned}
$$

(c) All nonterminals in G_{2} are reachable and generating, that is, there are no useless nonterminals in G_{2}. Therefore this step does not change the intermediate CFG obtained at the previous step.
(d) The construction of a CFG in Chomsky normal form from G_{2} proceeds in two steps. The first step eliminates terminal symbols in the right-hand side of the productions of G_{2}, in case they appear along with some other symbols. To do this we introduce new nonterminal symbols C_{a}, C_{b} and produce the intermediate CFG G_{3}

$$
\begin{aligned}
S & \rightarrow A B A|A A| B A B|A B| B A\left|C_{a} A\right| C_{b} B \mid b \\
A & \rightarrow C_{a} A\left|C_{b} B\right| b \\
B & \rightarrow b \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

The second step factorizes productions of G_{3} having right-hand side of length larger than two. To do this we introduce new nonterminal symbols D, E and produce the final CFG G_{4}

$$
\begin{aligned}
S & \rightarrow A D|A A| B E|A B| B A\left|C_{a} A\right| C_{b} B \mid b \\
D & \rightarrow B A \\
E & \rightarrow A B \\
A & \rightarrow C_{a} A\left|C_{b} B\right| b \\
B & \rightarrow b \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
(a) If L_{1} and L_{2} are not in CFL, then the language $L_{1} \cap L_{2}$ cannot be in CFL.
(b) If $L_{1} \cup L_{2}$ is a regular language, then also L_{1} and L_{2} are regular languages.
(c) Let Σ be some fixed alphabet and let $L_{i}, i \geq 1$, be finite languages over Σ. Then the language

$$
L=\cup_{i=1}^{\infty} L_{i}
$$

is always a regular language.
(d) The class \mathcal{P} of languages that can be recognized in polynomial time by a TM is closed under intersection with regular languages.

Solution

(a) False. Consider the alphabet $\Sigma=\{a, b, c\}$ and the counterexample $L_{1}=\left\{a^{n} b^{n} a^{n} \mid n \geq 1\right\}$, $L_{2}=\left\{b^{n} a^{n} b^{n} \mid n \geq 1\right\}$. It is easy to show that L_{1} and L_{2} are not in CFL, using the pumping lemma. But the language $L_{1} \cap L_{2}$ is the empty language, which is a regular language and therefore a CFL as well.
(b) False. Consider the alphabet $\Sigma=\{a, b\}$ and the counterexample $L_{1}=\left\{w \mid w \in \Sigma^{*}\right.$, $\#{ }_{a}(w)=$ $\left.\#_{b}(w)\right\}, L_{2}=\left\{w \mid w \in \Sigma^{*}, \#_{a}(w) \neq \#_{b}(w)\right\}$. It is easy to see that $L_{1} \cup L_{2}=\Sigma^{*}$ and thus a regular language. However, L_{1} and L_{2} are not regular languages.
(c) False. Consider the alphabet $\Sigma=\{a, b\}$ and, for each $i \geq 1$, the language $L_{i}=\left\{a^{i} b^{i}\right\}$. Each L_{i} contains exactly one string, therefore each L_{i} is a finite language. However, $L=\cup_{i=1}^{\infty} L_{i}=$ $\left\{a^{n} b^{n} \mid n \geq 1\right\}$, which is not a context-free language and therefore not a regular language.
(d) True. Let L_{1} be an arbitrary language in \mathcal{P}. By definition of \mathcal{P}, there exists some $\mathrm{TM} M_{1}$ such that $L\left(M_{1}\right)=L_{1}$ and M_{1} processes its input in polynomial time. Let also L_{2} be a regular language. It is not difficult to devise a TM M_{2} that simulates a DFA for L_{2} and that runs in polynomial time. We can now construct a TM M that, given as input a string w, simulates M_{1} and M_{2} on w in polynomial time. M accepts if both M_{1} and M_{2} accept, and rejects otherwise. This shows that the intersection language $L_{1} \cap L_{2}$ is in \mathcal{P}. Since L_{1} and L_{2} were chosen arbitrarily, we have shown that the class \mathcal{P} is closed under intersection with regular languages.
5. [9 points] For a property \mathcal{P} of the RE languages, define $L_{\mathcal{P}}=\{\operatorname{enc}(M) \mid L(M) \in \mathcal{P}\}$.
(a) Let k be some fixed natural number with $k>1$. Consider the following properties of the RE languages defined over the alphabet $\Sigma=\{0,1\}$:

$$
\begin{aligned}
& \mathcal{P}_{<k}=\{L|L \in \mathrm{RE},|L|<k\} \\
& \mathcal{P}_{\geq k}=\{L|L \in \mathrm{RE},|L| \geq k\} .
\end{aligned}
$$

Assess whether each of the languages $L_{\mathcal{P}_{<k}}$ and $L_{\mathcal{P}_{\geq k}}$ belongs to the classes REC, RE $\backslash \mathrm{REC}$, or else does not belong to RE.
(b) Let enc $\left(M_{1}, M_{2}\right)$ be a binary string representing some fixed encoding of TMs M_{1}, M_{2}. Consider the following language, where ' \cdot ' denotes the concatenation operation between languages:

$$
L=\left\{\operatorname{enc}\left(M_{1}, M_{2}\right)| | L\left(M_{1}\right) \cdot L\left(M_{2}\right) \mid<k\right\} .
$$

Prove that L does not belong to the class RE.

Solution

(a) Language $L_{\mathcal{P}_{\geq k}}$ is not in REC. To prove this statement, we apply Rice's theorem and show that property $\mathcal{P}_{\geq k}$ is not trivial. First, Σ^{*} is in RE and has more than k strings. Therefore we have $\Sigma^{*} \in \mathcal{P}_{\geq k}$ and $\mathcal{P}_{\geq k}$ is not empty. Second, the empty language \emptyset is in RE and has fewer than k strings, since $k \geq 1$. Therefore we have $\emptyset \notin \mathcal{P}_{\geq k}$, and $\mathcal{P}_{\geq k}$ does not contain every RE language. Since $\mathcal{P}_{\geq k}$ is not trivial, we can conclude that $L_{\mathcal{P}_{\geq k}}$ is not in REC, according to Rice's theorem. We now prove that $L_{\mathcal{P}_{\geq k}}$ is in RE. To this end, we specify a nondeterministic TM N such that $L(N)=L_{\mathcal{P}_{\geq k}}$. Let enc (M) be the input to N.

- Using nondeterminism, N guesses k different strings $w_{i} \in \Sigma^{*}, 1 \leq i \leq k$.
- For each $i=1, \ldots, k$ in the given order, N simulates M on input w_{i}.
- If any of the k simulations above does not halt, then N does not halt as well.
- If all of the k simulations halt, N accepts in case every simulation reaches a final state, and rejects otherwise.

It is not difficult to see that $L(N)=L_{\mathcal{P}_{\geq k}}$. Since nondeterministic TMs are equivalent to TMs , we conclude that $L_{\mathcal{P}_{\geq k}}$ is in RE .
Consider now the language $L_{\mathcal{P}_{<k}}$. We observe that $L_{\mathcal{P}_{<k}}$ is the complement language of $L_{\mathcal{P}_{\geq k}}$ with respect to Σ^{*}. Since $L_{\mathcal{P}_{\geq k}}$ is in $\mathrm{RE} \backslash \mathrm{REC}$, from a well-known property we conclude that $L_{\mathcal{P}_{<k}}$ cannot be in RE.
(b) Language L is not in RE. To prove this statement, we use the fact that $L_{\mathcal{P}_{<k}}$ is not in RE, as shown in (a), and define a reduction $L_{\mathcal{P}_{<k}} \leq_{m} L$.
We need to map instances enc (M) of $L_{\mathcal{P}_{<k}}$ into instances enc $\left(M_{1}, M_{2}\right)$ of L. We set $M_{1}=M$ and $M_{2}=M_{\varepsilon}$, where M_{ε} is any TM that recognizes the language $\{\varepsilon\}$. The following chain of logical equivalences shows that the construction represents a valid reduction:

$$
\begin{array}{llll}
\operatorname{enc}(M) \in L_{\mathcal{P}_{<k}} & \text { iff } & |L(M)|<k & \text { (definition of } \mathcal{P}_{<k} \text {) } \\
& \text { iff } & |L(M) \cdot\{\varepsilon\}|<k & \text { (definition of concatenation) } \\
& \text { iff } & \left|L\left(M_{1}\right) \cdot L\left(M_{\varepsilon}\right)\right|<k & \text { (definition of our reduction) } \\
& \text { iff } & \text { enc }\left(M_{1}, M_{2}\right) \in L & \text { (definition of } L \text {). }
\end{array}
$$

