# Master Degree in Computer Engineering <br> Final Exam for <br> Automata, Languages and Computation 

June 28th, 2021

1. [6 points] With reference to finite state automata, answer the following two questions.
(a) Specify the construction developed in class for transforming a NFA $N$ into a DFA $D$ equivalent to $N$.
(b) Formally prove the equivalence $L(D)=L(N)$.
2. [8 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b, c\}$

$$
\begin{aligned}
& L_{1}=\left\{a^{n} a^{m} b^{n} c^{m} \mid n, m \geq 1\right\}, \\
& L_{2}=\left\{a^{n} a^{n} b^{n} c^{n} \mid n \geq 1\right\} .
\end{aligned}
$$

State whether $L_{1}$ and $L_{2}$ are context-free languages, and provide a mathematical proof of your answers.
3. [4 points] Let $L$ be an arbitrary language.
(a) Provide the mathematical definition of language $L^{*}$.
(b) Provide a rigorous proof that $\left(L^{*}\right)^{*}=L^{*}$.
4. [7 points] Considering the membership problem for context-free languages, answer the following two questions.
(a) Specify the dynamic programming algorithm developed in class for the solution of this problem.
(b) Consider the CFG $G$, in Chomsky normal form, defined by the following productions:

$$
\begin{aligned}
& S \rightarrow A C \mid B C \\
& A \rightarrow B A \mid a \\
& B \rightarrow B B \mid b \\
& C \rightarrow B C \mid c
\end{aligned}
$$

Trace the application of the above algorithm for string $w=b b b a b b b c$
5. [8 points] Let $L_{R}$ be an arbitrary regular language defined over the alphabet $\Sigma=\{0,1\}$.
(a) Consider the following property of the RE languages defined over $\Sigma$

$$
\mathcal{P}=\left\{L \mid L \in \mathrm{RE}, L \cup L_{R}=\Sigma^{*}\right\} .
$$

and let

$$
L_{1}=\{\operatorname{enc}(M) \mid L(M) \in \mathcal{P}\},
$$

where enc $(M)$ is a binary string representing a fixed encoding of $M$. Assess whether $L_{1}$ belongs to the class REC, and provide a mathematical proof of your answer.
(b) Consider also the following language

$$
L_{2}=\left\{\operatorname{enc}\left(M, M^{\prime}\right) \mid L(M) \cup L\left(M^{\prime}\right) \cup L_{R}=\Sigma^{*}\right\}
$$

where $M, M^{\prime}$ are generic TMs accepting languages defined over $\Sigma$, and enc $\left(M, M^{\prime}\right)$ is a binary string representing a fixed encoding of $M, M^{\prime}$. Assess whether $L_{2}$ belongs to the class REC, and provide a mathematical proof of your answer.

