Master Degree in Computer Engineering

Final Exam for

Automata, Languages and Computation
July 18th, 2022

1. [5 points] Consider the two DFAs A_{1} and A_{2} whose transition functions are graphically represented as follows

Apply the construction in the textbook, using the cross-product of the state sets of A_{1} and A_{2}, to produce a new DFA A that recognizes the intersection language $L\left(A_{1}\right) \cap L\left(A_{2}\right)$. For the transition function of A, provide either a tabular representation or else a graphical representation.
2. [10 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b\}$

$$
\begin{aligned}
& L_{1}=\left\{w \mid w=a^{n} b^{n} b^{m} a^{m}, n, m \geq 1\right\} ; \\
& L_{2}=\left\{w \mid w=a^{n} b^{n} b^{n} a^{n}, n \geq 1\right\} ; \\
& L_{3}=\left\{w \mid w=a^{n} a^{n} a^{n} a^{n}, n \geq 1\right\} ;
\end{aligned}
$$

For each of the above languages, state whether it belongs to one of the classes REG and CFL \backslash REG, or else if it is outside of CFL. Provide a mathematical proof for all of your answers.
3. [5 points] With reference to push-down automata (PDA), answer the following questions.
(a) Provide the definition of language accepted by final state and language accepted by empty stack.
(b) Prove that if P_{N} is a PDA accepting by empty stack, then there exists a PDA P_{F} accepting by final state such that $N\left(P_{N}\right)=L\left(P_{F}\right)$.
4. [5 points] Provide the definition of a nondeterminstic TM M_{N} and of the recognized language $L\left(M_{N}\right)$. Prove that for each nondeterminstic TM M_{N} there exists a TM M_{D} such that $L\left(M_{N}\right)=$ $L\left(M_{D}\right)$
5. [6 points] Let \mathbf{N} be the set of natural numbers. Consider the following property of the RE languages defined over the alphabet $\Sigma=\{0,1\}$

$$
\mathcal{P}=\left\{L \mid L \in \mathrm{RE}, \exists n \in \mathbf{N}, \Sigma^{n} \subseteq L\right\} .
$$

In words, a language L is in \mathcal{P} if for some n, all strings of length n are in L.
Assess whether the language $L_{\mathcal{P}}$ belongs to one of the classes REC and RE \backslash REC, or else does not belong to RE, and provide a mathematical proof of your answer.
6. [2 points] Let \mathcal{P} be the class of languages that can be recognised in polynomial time by a TM. Prove that if L_{1} is in \mathcal{P} and L_{2} is in CFL, then $L_{1} \cdot L_{2}$ is still in \mathcal{P}.

