
Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Automata, Languages and Computation

Chapter 6 : Push-Down Automata

Master Degree in Computer Engineering
University of Padua

Lecturer : Giorgio Satta

Lecture based on material originally developed by :
Gösta Grahne, Concordia University

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Push-Down Automata

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

1 Push-Down Automata

2 Computations

3 Accepted language

4 Equivalence of PDAs e CFGs

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Introduction

A push-down automaton consists of

an ϵ-NFA

a stack representing the auxiliary memory

The stack can

record an arbitrary number of symbols

release symbols with a strict policy :
last in, first out

Push-down automata and context-free grammars are equivalent
formalisms

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Introduction

A transition of a push-down automaton

consumes a single symbol from the input, or else is an
ϵ-transition

updates the current state

replaces the top-most symbol of the stack stack with a string
of symbols, including ϵ

Stack

Finite
state
control

Input Accept/reject

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Introduction

More precisely, replacement of symbol X in the stack top-most
position with string γ amounts to

removing X if γ “ ϵ, also called pop

replacing X if γ “ Y , also called switch; if γ “ X , the stack
remains unaltered

inserting new symbols if |γ| ą 1; if γ “ ZX the transition is
called push

First symbol of γ becomes top symbol of the new stack

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Let us consider the language (palindrome strings with even length)

Lwwr “ twwR | w P t0, 1u˚u

generated by the CFG productions

P Ñ 0P0, P Ñ 1P1, P Ñ ϵ

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

A push-down automaton for Lwwr has three states, and operates as
follows

Guess that you are reading w . Stay in state q0, and push the input
symbol onto the stack

Guess that you are at the boundary between w and wR . Go to
state q1 using an ϵ-transition

You are now reading the first symbol of wR . Compare it to the top
of the stack. If they match, pop the stack and remain in state q1.
If they don’t match, the automaton halts, i.e., it does not have a
next move

If the stack is empty, go to state q2 and accept

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Definition of push-down automaton

A push-down automaton, or PDA for short, is a tuple

P “ pQ,Σ, Γ, δ, q0,Z0,F q,

with

Q finite set of states

Σ finite input alphabet

Γ finite stack alphabet

δ : Q ˆ Σ Y tϵu ˆ Γ Ñ 2QˆΓ˚

is a transition function, always
using finite subsets of 2QˆΓ˚

q0 P Q is the initial state

Z0 P Γ is the initial stack symbol

with no symbol in the stack δ is undefined

F Ď Q is the set of final states

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

The PDA for Lwwr is defined as

P “ ptq0, q1, q2u, t0, 1u, t0, 1,Z0u, δ, q0,Z0, tq2uq,

where δ is specified by the following transition table (omitting
curley brackets; stack represented as string with top at the left)

0,Z0 1,Z0 0,0 0,1 1,0 1,1 ϵ,Z0 ϵ, 0 ϵ, 1

Ñ q0 q0, 0Z0 q0, 1Z0 q0, 00 q0, 01 q0, 10 q0, 11 q1,Z0 q1, 0 q1, 1

q1 q1, ϵ q1, ϵ q2,Z0

‹q2

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

The transition function δ can also be represented in graphical
notation, using the convention that pp, αq P δpq, a,X q is associated
with an arc from state q to state p with label a,X {α

1 ,

ε, Z 0 Z 0 Z 0 Z 0ε , /

1 , 0 / 1 0
0 , 1 / 0 1
0 , 0 / 0 0

Z 0 Z 01 ,
0 , Z 0 Z 0/ 0

ε, 0 / 0
ε, 1 / 1

0 , 0 / ε

q q q0 1 2

1 / 1 1

/

Start

1 , 1 / ε

/ 1

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Instantaneous description

Informally, a computation of a PDA is a sequence of
“configurations” of the automaton obtained one from the other by
consuming an input symbol or else by reading ϵ

In order to formalize the configuration of a PDA we introduce the
mathematical notion of instantaneous description

To formalize the computation of a PDA we then introduce a binary
relation over instantaneous descriptions called moves

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Instantaneous description

An instantaneous description, or ID for short, is a triple

pq,w , γq

where

q is the current state

w is the part of the input still to be read

γ is the stack content, with topmost symbol at the left

In this lecture, we will interchangeably use terms instantaneous description and

configuration

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Computation

Let P “ pQ,Σ, Γ, δ, q0,Z0,F q be a PDA. We define a binary
relation over the set of IDs called moves, written $

P
or also $

@w P Σ˚, β P Γ˚ :

pp, αq P δpq, a,X q ñ pq, aw ,Xβq $ pp,w , αβq

pp, αq P δpq, ϵ,X q ñ pq,w ,Xβq $ pp,w , αβq

We define
˚

$
P
as the reflexive and transitive closure of $

P
. We use

˚
$
P

to define a computation of a PDA

Compare the above with the two relations rewrite and derivation for a CFG

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Given our PDA for Lwwr

1 ,

ε, Z 0 Z 0 Z 0 Z 0ε , /

1 , 0 / 1 0
0 , 1 / 0 1
0 , 0 / 0 0

Z 0 Z 01 ,
0 , Z 0 Z 0/ 0

ε, 0 / 0
ε, 1 / 1

0 , 0 / ε

q q q0 1 2

1 / 1 1

/

Start

1 , 1 / ε

/ 1

describe the computation of the automaton for the input 1111

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

The PDA nondeterministically performs the following computations

)0Z

)0Z

)0Z

)0Z

)0Z

)0Z

)0Z

)0Z

q
2(,

q
2(,

q
2(,

)0Z

)0Z

)0Z

)0Z

)0Z)0Z

)0Z

)0Zq
1

q0

q0

q0

q0

q0

q
1

q
1

q
1

q
1

q
1

q
1

q
1

q
1

1111, 0Z)

111, 1

11, 11

1, 111

ε , 1111

1111,

111, 1

11, 11

1, 111

1111,

11,

11,

1, 1

ε ε ,, 11

ε ,

,(

,(

,(

,(

ε , 1111(,

,(

(,

(,

(,

(,

(,

(,

(,

(,

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Notational conventions for PDAs

We use the following notational conventions

a, b, c , ..., a1, a2, ..., ai , ... symbols from the input alphabet

p, q, r , ..., q1, q2, ..., qi , ... states of the automaton

u, w , x , y , z input strings

X , Y , Z stack symbols

α, β, γ, ... stack contents (strings of stack symbols)

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Properties of computations

Intuitively, stack or input symbols that are not read/consumed by
the PDA do not affect the computation :

if an ID sequence is valid (relation $), then so is the
sequence obtained by adding any string to the tail of the input

if an ID sequence is valid, then so is the sequence obtained by
adding any string to the bottom of the stack

if an ID sequence is valid and some tail of the input is not
consumed, then so is the sequence obtained by removing that
tail in every ID in the sequence

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Properties of computations

Theorem @w P Σ˚, γ P Γ˚ :

pq, x , αq
˚

$ pp, y , βq ñ pq, xw , αγq
˚

$ pp, yw , βγq

Note :

if γ “ ϵ we get property 1, and if w “ ϵ we get property 2
from previous slide

the inverse of the above theorem does not hold: γ can be
used in the computation and ‘reconstructed’ afterward

Theorem @w P Σ˚ :

pq, xw , αq
˚

$ pp, yw , βq ñ pq, x , αq
˚

$ pp, y , βq

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Acceptance by final state

Let P “ pQ,Σ, Γ, δ, q0,Z0,F q be a PDA

The language accepted by final state by P is

LpPq “ tw | pq0,w ,Z0q
˚

$ pq, ϵ, αq, q P F u

Note :

The stack does not necessarily need to be empty at the end of
the computation

The PDA cannot test the end of the string: this is an external
condition in the definition of LpPq

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Skip this proof. No general technique to prove LpPq “ L

We show that the PDA P defined in a previous example satisfies
LpPq “ Lwwr

(part Ě) Let x P Lwwr . Then x “ wwR , and the following is a valid
computation

pq0,ww
R ,Z0q

˚
$ pq0,w

R ,wRZ0q

$ pq1,w
R ,wRZ0q

˚
$ pq1, ϵ,Z0q

$ pq2, ϵ,Z0q

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

(part Ď) Observe that the only way the PDA can enter state q2 is
if it is in state q1 with the stack containing only Z0 (empty stack)

Thus it is sufficient to show that if pq0, x ,Z0q
˚

$ pq1, ϵ,Z0q then
x “ wwR , for some string w

Using induction on |x |, we prove a more general property

pq0, x , αq
˚

$ pq1, ϵ, αq ñ x “ wwR

Base If x “ ϵ then x is a palindrome

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Induction Suppose x “ a1a2 ¨ ¨ ¨ an, where n ą 0, and the inductive
hypothesis holds for shorter strings

There are two possible moves for P from ID pq0, x , αq

Move 1 : pq0, x , αq $ pq1, x , αq. Now P can only pop the stack,
and any successive computation must have the form

pq1, x , αq
˚

$ pq1, ϵ, βq

with |β| ă |α|

Therefore β ‰ α, and we can never reach the desired ID pq1, ϵ, αq

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Move 2 : pq0, a1a2 ¨ ¨ ¨ an, αq $ pq0, a2 ¨ ¨ ¨ an, a1αq. After this move,
the only way to reach the desired ID pq1, ϵ, αq is through a
computation with a pop final move

pq1, an, a1αq $ pq1, ϵ, αq

which implies an “ a1

The intermediate computation must have the form

pq0, a2 ¨ ¨ ¨ an, a1αq
˚

$ pq1, an, a1αq

By a previous theorem we can remove symbol an. Thus

pq0, a2 ¨ ¨ ¨ an´1, a1α
˚

$ pq1, ϵ, a1αq

By inductive hypothesis, a2 ¨ ¨ ¨ an´1 “ yyR . Since an “ a1,
x “ a1yy

Ran is a palindrome l

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Acceptance by empty stack

Let P “ pQ,Σ, Γ, δ, q0,Z0,F q be some PDA. The language
accepted by empty stack by P is

NpPq “ tw | pq0,w ,Z0q
˚

$ pq, ϵ, ϵqu

for any state q

Note : Since final states are no longer relevant in this case, set F
is not used in the definition

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From empty stack to final state

Theorem If L “ NpPNq for some PDA PN “ pQ,Σ, Γ, δN , q0,Z0q,
then there exists a PDA PF such that L “ LpPF q

Proof Let

PF “ pQ Y tp0, pf u,Σ, Γ Y tX0u, δF , p0,X0, tpf uq

where

δF pp0, ϵ,X0q “ tpq0,Z0X0qu

for each q P Q, a P Σ Y tϵu, Y P Γ we let
δF pq, a,Y q “ δNpq, a,Y q

for each q P Q we let ppf , ϵq P δF pq, ϵ,X0q

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From empty stack to final state

Graphical representation of PDA PF such that L “ LpPF q

X 0 Z 0X 0ε,

ε, X 0 / ε

ε, X 0 / ε

ε, X 0 / ε

ε, X 0 / ε

q
/

PN

Start
p0 0 pf

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From empty stack to final state

We need to prove LpPF q “ NpPNq

(part Ě) Let w P NpPNq. Then

pq0,w ,Z0q
˚

$
N

pq, ϵ, ϵq,

for some q. From a previous theorem

pq0,w ,Z0X0q
˚

$
N

pq, ϵ,X0q

Since δN Ă δF , we have

pq0,w ,Z0X0q
˚

$
F

pq, ϵ,X0q

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From empty stack to final state

We thus conclude

pp0,w ,X0q $
F

pq0,w ,Z0X0q
˚

$
F

pq, ϵ,X0q $
F

ppf , ϵ, ϵq

(part Ď) By inspecting PF diagram, any accepting computation for
w in PF embeds an accepting computation for w in PN l

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From final state to empty stack

Theorem Let L “ LpPF q for some PDA PF “ pQ,Σ, Γ, δF , q0,
Z0,F q. There exists a PDA PN such that L “ NpPNq

Construction diagram for PN from PF

ε, any/ ε ε, any/ ε

ε, any/ ε

X 0 Z 0ε, / X 0 pPF
Start

p q0 0

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From final state to empty stack

Proof Let

PN “ pQ Y tp0, pu,Σ, Γ Y tX0u, δN , p0,X0q

where

δNpp0, ϵ,X0q “ tpq0,Z0X0qu

δNpq, a,Y q “ δF pq, a,Y q for each q P Q, a P Σ Y tϵu, Y P Γ

pp, ϵq P δNpq, ϵ,Y q, for each q P F , Y P Γ Y tX0u

δNpp, ϵ,Y q “ tpp, ϵqu, for each Y P Γ Y tX0u

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From final state to empty stack

We now prove NpPNq “ LpPF q

(part Ď) By inspecting PN diagram, any accepting computation for
w in PN embeds an accepting computation for w in PF

(part Ě) Let w P LpPF q. Then

pq0,w ,Z0q
˚

$
F

pq, ϵ, αq

for some q P F , α P Γ˚

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From final state to empty stack

Since δF Ď δN , and from a previous theorem stating that X0 can
be added to the bottom of the stack, we have

pq0,w ,Z0X0q
˚

$
N

pq, ϵ, αX0q

Then PN can compute

pp0,w ,X0q $
N

pq0,w ,Z0X0q
˚

$
N

pq, ϵ, αX0q
˚

$
N

pp, ϵ, ϵq

l

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Exercises

Specify a PDA accepting by final state the language

L “ tanbnc i | n ě 1, i ě 1u

and informally explain the way computations work

Specify a PDA accepting by empty stack the language

L “ tc ianbn | n ě 1, i ě 1u

and informally explain the way computations work

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Exercises

Specify a PDA accepting by empty stack the language

L “ tw P t0, 1, 2u` | w “ x2x 1, x , x 1 P p0 ` 1q˚, x 1 “ xRu

and informally explain the way computations work

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Equivalence of PDAs and CFGs

Let L be a language. The following statements are equivalent

L is generated by a CFG

L is accepted by a PDA by empty stack

L is accepted by a PDA by final state

PDA by
empty stack

PDA by
final stateGrammar

We have already seen the equivalence between empty stack and
final state

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

Given G , we specify a PDA PG accepting by empty stack and

simulating the relation
˚
ñ
lm

We write left sentential forms as xAα, where A is the leftmost
variable and Aα is called the tail of the form

Example :
pa`

loomoon

x

E
loomoon

A

q
loomoon

α
loooooomoooooon

tail

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

PG makes use of only one state q, therefore no relevant
information is encoded into states of the PDA

Let w “ xy . The leftmost sentential form xAα is represented by
the ID pq, y ,Aαq of PG that

has consumed input x

has input y still to be processed

has tail Aα on the stack

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

A derivation step
xAα ñ

lm
xβα

is simulated by PG with a nondeterministic move from ID
pq, y ,Aαq to ID pq, y , βαq

In the ID pq, ay , aαq, PG moves deterministically to ID pq, y , αq,
removing a from both the stack and the input

In all remaining cases, the PDA halts in an error condition

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

Formally, let G “ pV ,T ,R,Sq be some CFG. We define PG as

ptqu,T ,V Y T , δ, q, Sq,

where

δpq, ϵ,Aq “ tpq, βq | pA Ñ βq P Ru for each A P V

δpq, a, aq “ tpq, ϵqu for each a P T

If all the nondeterministic choices are correct, PG completes the
processing of the input with an empty stack

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

Example

Consider the CFG for arithmetic expressions

I Ñ a | b | Ia | Ib | I0 | I1

E Ñ I | E ˚ E | E ` E | pE q

The transition function of the PDA is

δpq, ϵ, I q “ tpq, aq, pq, bq, pq, Iaq, pq, Ibq, pq, I0q, pq, I1qu

δpq, ϵ,E q “ tpq, I q, pq,E ˚ E q, pq,E ` E q, pq, pE qqu

δpq,X ,X q “ tpq, ϵqu, @X P ta, b, 0, 1, p, q,`, ˚u

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

Theorem NpPG q “ LpG q

Proof (Part Ě) Let w P LpG q. Then we can write

S “ γ1 ñ
lm

γ2 ñ
lm

¨ ¨ ¨ ñ
lm

γn “ w

Let γi “ xiαi and let w “ xiyi . We show by induction on i that if

S
˚
ñ
lm

γi then pq,w ,Sq
˚

$ pq, yi , αi q

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

Base i “ 1. Then γ1 “ S , x1 “ ϵ and y1 “ w . Therefore

pq,w ,Sq
˚

$ pq,w ,Sq

Induction By the inductive hypothesis pq,w , Sq
˚

$ pq, yi , αi q. We

have to show that pq, yi , αi q
˚

$ pq, yi`1, αi`1q

From our hypotheses, αi begins with a variable and we can write

xiAχ
loomoon

γi

ñ
lm

xi`1βχ
loomoon

γi`1

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

From the inductive hypothesis, Aχ is in the stack, and yi is the
remaining portion of the input. According to PG definition, we can
make the move

pq, yi ,Aχq $ pq, yi , βχq

using a transition of the first type

Let us write βχ “ uβ1, where u is the longest prefix (including ϵ)
of βχ that is entirely composed of terminal symbols. We can now
remove the terminal symbols of u from the stack, and eliminate
the corresponding terminal symbols yi , using transitions of the
second type

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

In this way we reach the ID pq, yi`1, αi`1q, with αi`1 “ β1

representing the tail of the leftmost sentential form xiuβ
1 “ γi`1

Finally, since γn “ w , we have αn “ ϵ e yn “ ϵ, and thus

pq,w , Sq
˚

$ pq, ϵ, ϵq. Therefore w P NpPG q

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

(Part Ď) We prove the more general statement :

if pq, x ,Aq
˚

$ pq, ϵ, ϵq, then A
˚
ñ x

In words, if PG makes a computation that

consumes an input string x

removes a variable A from the top of the stack

does not read/consume the portion of the stack below A

then, in the CFG G , nonterminal A generates x

We prove the statement above by induction on the length of the
computation of PG

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

Base Computation length 1. Then A Ñ ϵ must be a production of
G , x “ ϵ, and PG makes a transition of the first type. Therefore
A ñ ϵ

Induction Computation length n ą 1: the inductive hypothesis
holds for any computation having length smaller than n

Since A is a variable, the computation must start with a transition
of the first type

pq, x ,Aq $ pq, x ,Y1Y2 ¨ ¨ ¨Ykq $ ¨ ¨ ¨ $ pq, ϵ, ϵq

where A Ñ Y1Y2 ¨ ¨ ¨Yk is a production of G

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

We factorize x in x “ x1x2 ¨ ¨ ¨ xk , as in the following example
where k “ 3, Y1 “ B, Y2 “ a, e Y3 “ C

B

a

C

xx x
1 2 3

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

We obtain that, for every i P t1, . . . , ku, the computation

pq, xixi`1 ¨ ¨ ¨ xk ,Yi q
˚

$ pq, xi`1 ¨ ¨ ¨ xk , ϵq

has fewer than k steps

If Yi is a variable, we use the inductive hypothesis to write

Yi
˚
ñ xi

If Yi is a terminal symbol, then |xi | “ 1 and Yi “ xi . Therefore

Yi
˚
ñ xi from the reflexive property of

˚
ñ

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

We can now compose the desired derivation

A ñ Y1Y2 ¨ ¨ ¨Yk

˚
ñ x1Y2 ¨ ¨ ¨Yk

...
˚
ñ x1x2 ¨ ¨ ¨ xk “ x

Automata, Languages and Computation Chapter 6

Push-Down Automata
Computations

Accepted language
Equivalence of PDAs e CFGs

From CFG to PDA

To derive the statement of the theorem, we let A “ S e x “ w

Assume w P NpPG q. Then pq,w ,Sq
˚

$ pq, ϵ, ϵq, and using the

general property above we have S
˚
ñ w , and thus w P LpG q l

Automata, Languages and Computation Chapter 6

	Push-Down Automata
	Computations
	Accepted language
	Equivalence of PDAs e CFGs

