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1. [6 points] Consider the FA A whose transition function is graphically represented as follows

q0 q1 q2

q3 q4

Start 0

1
0

1

1

01

1

1

0

1

0

Consider the algorithm for transforming a FA into a regular expression, based on state elimination.
Apply the algorithm to eliminate state q1 from A, and display the resulting automaton A′. Further-
more, eliminate state q3 from A′, and display the resulting automaton A′′. If you simplify any of the
resulting regular expressions, add some discussion.

Solution After the elimination of q1 from A we obtain the automaton A′, graphically represented as

q0 q2

q3 q4

Start (ε+ 00∗)1

0

00∗1

10∗1

1(ε+ 0∗1)

110∗1

0

0

10∗1

After the elimination of q3 from A′ we obtain the automaton A′′, graphically represented as
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q0 q2

q4

Start

1 + 0(ε+ 0∗ + 10∗)10(0∗ + 10∗)1

110∗100

0

10∗1

2. [8 points] Consider the following languages, defined over the alphabet Σ = {a, b}

L1 = {apbaqbaqbar | p, q, r ≥ 1} ,
L2 = {apbaqbaq+r | p, q, r ≥ 1} ,
L3 = {ap+qbaq+r | p, q, r ≥ 1} .

State whether L1, L2 and L3 are regular languages, and provide a mathematical proof of your answers.

Solution

(a) L1 is not a regular language. To prove this statement we apply the pumping lemma for regular
languages. Let N be the pumping lemma constant associated with L1. We choose the string
w = abaNbaNba, w ∈ L1, and consider all possible factorizations w = xyz satisfying the conditions
y 6= ε and |xy| ≤ N . We separately discuss all possible cases in what follows.

• If y contains an occurrence of b, the iterated string xyyz will not belong to L1, since it
contains more than three occurrences of b. Therefore in the next items we assume that y
does not contain any occurrence of b.

• If y contains the leftmost occurrence of a in w, we must have x = ε and y = a. Then the
iterated string xz will not belong to L1, since it starts with b.

• If y contains any occurrence of a from the second run of a’s in the string w = abaNbaNba,
we have that the iterated string xz has the form abapbaNba with p < N , which again cannot
be in L1 because the second and the third runs of a’s do not have the same length.

• No other case is possible for the factorization w = xyz, since from condition |xy| ≤ N
we have that y cannot contain any occurrence of a from the third run of a’s in the string
w = abaNbaNba.

Since we have falsified the pumping lemma, we must conclude that L1 is not a regular language.

(b) L2 is not a regular language. To prove this statement we again apply the pumping lemma for
regular languages. Let N be the pumping lemma constant associated with L2. We choose the
string w = abaNbaN+1, w ∈ L2, and consider all possible factorizations w = xyz. We separately
discuss all possible cases in what follows; the discussion is very similar to the one in item (a)
above.
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• If y contains an occurrence of b, the iterated string xyyz will not belong to L2, since it
contains more than two occurrences of b. Therefore in the next items we assume that y does
not contain any occurrence of b.

• If y contains the leftmost occurrence of a in w, we must have x = ε and y = a. Then the
iterated string xz will not belong to L2, since it starts with b.

• If y contains any occurrence of a from the second run of a’s in the string abaNbaN+1, we
have that the iterated string xyyz has the form abaN+pbaN+1 with p > 0, which cannot be
in L2 because the second run of a’s is not shorter in length than the third run of a’s.

• No other case is possible for the factorization w = xyz, since from condition |xy| ≤ N we
have that y cannot contain any occurrence of a from the third run of a’s in the string w.

Since we have falsified the pumping lemma, we must conclude that L2 is not a regular language.

(c) L3 is a regular language. In fact, it is not difficult to see that L3 is generated by the regular
expression aaa∗baaa∗.

3. [6 points] Considering the intersection operation between two languages, answer the following ques-
tions

(a) Show that the class of context-free languages is not closed under intersection.

(b) Specify in detail the construction that takes as input a PDA P and a DFA A and produces a
PDA P ′ that accepts the language L(P ) ∩ L(A).

Solution

(a) The textbook reports two languages in CFL whose intersection is no longer in CFL.

(b) The specification of the state set and of the transition function of the intersection PDA are
reported in the textbook.

4. [6 points] Assess whether the following statements are true or false, providing a mathematical proof
for all of your answers.

(a) Every language in CFL is also in P, and there exists a language L ∈ P such that L is not in CFL.

(b) Let L1 and L2 be two languages such that L1 ≤m L2 and L1 not in REC. In some cases, we might
have L2 in REC.

(c) Let L1, L2 and L3 be languages such that L1 ≤p L2 and L2 ≤p L3. Then we have L1 ≤p L3

(symbol ≤p indicates the existence of a polynomial time reduction between two languages).

Solution

(a) True. Here P is the class of languages that can be recognized in polynomial time by a TM. Let L
be a CFL. To decide whether an input string belongs to L, we use the CKY algorithm specified
in the textbook, which takes polynomial time on a RAM machine. Since we can simulate a RAM
program with a TM with only polynomial time overhead, we can decide whether any input string
belongs to L on a TM using polynomial time.

Consider now the language L = {anbncn | n ≥ 1}. It is easy to show that L is not in CFL, using
the pumping lemma. Furthermore, it is not difficult to define a TM recognizing L and running
in polynomial time.
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(b) False. From L1 not in REC we have that L1 must also be outside of REC, following a theorem
from the textbook. From L1 ≤m L2 and the definition of reduction, we have that L2 must be
outside of REC as well. But then L2 cannot belong to REC.

(c) True. In other words, we need to prove that the polynomial time reduction relation is transitive.
Since L1 ≤p L2, there exists a TM program P1 that runs in polynomial time O(np1) and that
transforms instances of the problem associated with L1 into instances of the problem associated
with L2, with the property that P1(x) is a positive instance if and only if x is a positive instance.
Similarly, from L2 ≤p L3 we have that there exists a TM program P2 that runs in polynomial
time O(np2) and that transforms instances of the problem associated with L2 into instances of
the problem associated with L3, with the property that P2(x) is a positive instance if and only if
x is a positive instance. If we compose P1 and P2 into P2 ◦ P1, we have a TM program that runs
in polynomial time O((np1)p2) = O(np1·p2). It is easy to see that P2 ◦ P1 transforms instances
of the problem associated with L1 into instances of the problem associated with L3, with the
property that P2 ◦ P1(x) is a positive instance if and only if x is a positive instance. We thus
conclude that L1 ≤p L3.

Note: a common mistake for this question is to assert that P2 ◦ P1 runs in polynomial time
O(np1+p2).

5. [7 points] Define the following property of the RE languages defined over the alphabet Σ = {0, 1}

P = {L | L ∈ RE, L 6= Σ∗} .

Assess whether the language LP belongs to the class REC, and provide a mathematical proof of your
answer. Consider also the following language

L = {enc(M,M ′) | L(M) ∩ L(M ′) 6= Σ∗}

where M,M ′ are generic TMs accepting languages defined over Σ, and enc(M,M ′) is a binary string
representing a fixed encoding for M,M ′. Assess whether the language L belongs to the class REC,
and provide a mathematical proof of your answer.

Solution Recall that LP = {enc(M) | L(M) ∈ P}. We prove that LP is not in REC by applying
Rice’s theorem. We need to show that P is not a trivial property.

• P 6= ∅. Consider a string w ∈ Σ and the finite language L = {w}. We have L 6= Σ∗ and thus
L ∈ P and P is not empty.

• P 6= RE. It is immediate to see that the language Σ∗ does not belong to P. Since Σ∗ is in RE,
we have that P is not RE.

Since P is not trivial, from Rice’s theorem we have that P is not in REC.

To answer the second point, we show that L is not in REC. Note that we cannot apply Rice’s theorem
in this case, since a string in L is not the encoding of a single TM, it is instead the encoding of a pair
of TMs. We then need to produce a reduction. Since we know from the first part of this question that
LP is not in REC, we prove LP ≤m L.

We need to provide an effective construction, that is, a construction that can be implemented by a
TM with output that always halts, that maps strings of the form enc(M) into strings of the form
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enc(M ′,M ′′) such that enc(M) ∈ LP if and only if enc(M ′,M ′′) ∈ L. To do this, we simply set
M ′ = M and M ′′ = M . In this way, we have the following chain of logical equivalences, which proves
that the construction is a valid reduction

enc(M) ∈ LP iff L(M) 6= Σ∗ (definition of LP)
iff L(M) ∩ L(M) 6= Σ∗ (definition of ∩)
iff L(M ′) ∩ L(M ′′) 6= Σ∗ (construction of M ′,M ′′)
iff enc(M ′,M ′′) ∈ L (definition of L).
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