Master Degree in Computer Engineering

Final Exam for

Automata, Languages and Computation
September 3rd, 2021

1. [4 points] Consider the regular expression $r=(\mathbf{0}+\mathbf{1})^{*} \emptyset(\epsilon+\mathbf{0 1})$. Convert r into an equivalent ϵ-NFA using the construction we have presented in class. Important: do not simplify the regular expression before applying the construction, use r as is.
2. [9 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b, c\}$

$$
\begin{aligned}
& L_{1}=\left\{w\left|w=X u Y v Z, X, Y, Z \in \Sigma, u, v \in \Sigma^{*}, X=Z,|u|=|v|\right\}\right. \\
& L_{2}=\left\{w \mid w=X u Y v Z, X, Y, Z \in \Sigma, u, v \in \Sigma^{*}, X=Y=Z\right\} \\
& L_{3}=\left\{w\left|w=X u Y v Z, X, Y, Z \in \Sigma, u, v \in \Sigma^{*}, X=Y=Z,|u|=|v|\right\} .\right.
\end{aligned}
$$

State whether the above are regular languages, and provide a mathematical proof of your answers.
3. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
(a) If $L_{1}, L_{2} \in \mathrm{CFL}$ then $L_{1} \cap L_{2} \in \mathrm{REC}$;
(b) If $L_{1} \in$ REG and $L_{2} \in \mathrm{CFL} \backslash$ REG then $L_{1} \cdot L_{2}$ is never in REG;
(c) If $L_{1} \cdot L_{2} \in$ REG then $L_{1}, L_{2} \in$ REG.
4. [6 points] Consider the language $L=\left\{a^{n} b^{m} \mid n, m \geq 0\right\}$ and the context-free grammar $G=$ ($\{S, A\},\{a, b\}, P, S$), where P contains the following rules

$$
\begin{aligned}
& S \rightarrow a S \mid A \\
& A \rightarrow b A \mid \varepsilon
\end{aligned}
$$

Using mutual induction, we want to construct a mathematical proof that $L(G)=L$. In order to do this, for each variable $X \in\{S, A\}$ define a property \mathcal{P}_{X} over strings $x \in\{a, b\}^{*}$ such that $\mathcal{P}_{X}(x)$ holds if and only if there is a derivation in G that starts with X and produces x. Important: develop your proof only for property \mathcal{P}_{S}.
5. [8 points] Define the notion of property of the languages generated by TMs and state Rice's theorem. Provide the proof of Rice's theorem that we have developed in class.

