Automata, Languages and Computation

Chapter 9 : Undecidability

Master Degree in Computer Engineering University of Padua Lecturer: Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Undecidability

Recursively enumerable languages

From now onward : Modern computers $=$ Turing machines
A language L is recursively enumerable (RE) if $L=L(M)$ for some TM M

Given an input string w, M halts if $w \in L(M)$, but M may not halt if $w \notin L(M)$

Recursive languages

A language L is recursive (REC) or, equivalently, the decision problem L represents is decidable, if $L=L(M)$ for a TM M that halts for every input

A recursive/decidable language corresponds to the definition of algorithm, for which we impose that computation halts both for positive and negative instances of the problem

String indexing

Let us sort all strings in $\{0,1\}^{*}$:

- by length
- lexicografically, for strings of the same length

i	string
1	ϵ
2	0
3	1
4	00
5	01
\vdots	\vdots

We associate with each string a positive integer i called index

String indexing

We write w_{i} to denote the i-th string
We can easily verify that, for each $w \in\{0,1\}^{*}$, we have

$$
w=w_{i} \Leftrightarrow i=1 w
$$

Encoding of TM

We now want to encode a TM with binary input alphabet $M=\left(Q,\{0,1\}, \Gamma, \delta, q_{1}, B, F\right\}$ by means of a binary string, which we denote enc (M)

We need to assign integers to each state, tape symbol, and symbols L and R indicating directions

We rename the states as $q_{1}, q_{2}, \ldots, q_{r}$. Initial state: q_{1}, final state: q_{2} (unique)

We rename the tape symbols as $X_{1}, X_{2}, \ldots, X_{s}$. Also: $0=X_{1}$, $1=X_{2}, B=X_{3}$
$L=D_{1}$ and $R=D_{2}$

Encoding of TM

For the transition function, if

$$
\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)
$$

the binary code C for the transition is (we use unary notation for $i, j, k, l, m)$

$$
0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}
$$

Note: We never have two consecutive occurrences of 1 , since $i, j, k, l, m \geqslant 1$ is always satisfied

Encoding of TM

For a TM, we concatenate the codes C_{i} for all transitions, separated by 11

$$
C_{1} 11 C_{2} 11 \cdots 11 C_{n-1} 11 C_{n}
$$

There are several codes for M, obtained by indexing the symbols and/or listing the transitions in different orders

Many binary strings do not correspond to a TM Example: 11001 or 001110

Note: In the following we write enc (M) to denote a generic code for M; keep in mind that enc () is not a function.
Try to draw a map between set of all TMs and set of binary strings, representing the encoding relation

Example

Let $M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0,1\},\{0,1, B\}, \delta, q_{1}, B,\left\{q_{2}\right\}\right)$, where δ is defined as

$$
\begin{array}{ll}
\delta\left(q_{1}, 1\right)=\left(q_{3}, 0, R\right) & \delta\left(q_{3}, 0\right)=\left(q_{1}, 1, R\right) \\
\delta\left(q_{3}, 1\right)=\left(q_{2}, 0, R\right) & \delta\left(q_{3}, B\right)=\left(q_{3}, 1, L\right)
\end{array}
$$

Transition encodings C_{i}

$$
\begin{array}{ll}
0100100010100 & 0001010100100 \\
00010010010100 & 0001000100010010
\end{array}
$$

TM encoding enc (M)
01001000101001100010101001001100010010010100110001000100010010

TM indexing

We can now enumerate all TM (with repetition) using positive integers as indices and using our string indexing

For $i \geqslant 1$, the i-th TM M_{i} is defined as follows

- if w_{i} is a valid encoding representing TM M, then $M_{i}=M$
- if w_{i} is not a valid encoding, then M_{i} is the TM that halts immediately for any input (only one state and no transition, $\left.L\left(M_{i}\right)=\varnothing\right)$

Diagonalization language

The diagonalization language is the set

$$
L_{d}=\left\{w \mid w=w_{i}, w_{i} \notin L\left(M_{i}\right)\right\}
$$

In words, L_{d} contains all binary strings w_{i} such that the i-th TM does not accept w_{i}

Diagonalization language

The following table reports whether M_{i} accepts (1) or rejects (0) w_{j}

Diagonal

Diagonalization language

We can interpret the i-th row of the table as the characteristic vector of language $L\left(M_{i}\right)$: an entry is 1 iff the corresponding string belongs to the language

Observation: The table represents the entire class RE. In fact, a language is in RE if and only if its characteristic vector is a row of the table

Diagonalization language

The following statements are logically equivalent

- the i-th element of the diagonal is 0
- $w_{i} \notin L\left(M_{i}\right)$
- $w_{i} \in L_{d}$

This means that, if we complement the diagonal, we obtain the characteristic vector of language L_{d}

This vector cannot be a row of the table, because the diagonal element of each row does not match with at least one position of the characteristic vector of language L_{d}

Diagonalization language

Theorem L_{d} is not in RE
Proof Let us assume that there is a TM M such that $L_{d}=L(M)$. Choose i such that $M_{i}=M$. Does the string w_{i} belong to L_{d} ?

If $w_{i} \in L_{d}$, then M_{i} accepts w_{i} because $L_{d}=L\left(M_{i}\right)$. But by definition of L_{d}, the i-th element of the diagonal is 0 and therefore M_{i} does not accept w_{i}

If $w_{i} \notin L_{d}$, then M_{i} does not accept w_{i}. But by definition of L_{d}, the i-th element of the diagonal is 1 and therefore M_{i} accepts w_{i}

We have therefore obtained a contradiction

Recursive languages

A language L is recursive (REC) if $L=L(M)$ for some TM M such that

- if $w \in L$, then M halts in a final state
- if $w \notin L$, then M halts in a non-final state

If we think of L as a decision problem P_{L}, then we say that P_{L} is decidable whenever L is recursive, and P_{L} is undecidable otherwise

Decidability corresponds to the notion of algorithm: we have a sequence of steps that always ends and produces some answer

REC vs. RE \backslash REC

Comparison :

- recursive language means that there is an algorithm for solving the associated decision problem, that is, we always have an answer
- language in RE that is non-recursive means that we can enumerate the positive instances of the problem, but we cannot conclude in a finite amount of time that an instance has a negative answer

The distinction between decidable / undecidable problems is often more important than the distinction between RE / non-RE problems

Language classes

- recursive $=$ decidable $=M$ always halts
- $\mathrm{RE}=M$ halts upon acceptance
- non-RE = we cannot compute; Example : L_{d}

Properties of recursive languages

Theorem If L is recursive, then \bar{L} is recursive
Proof If L is recursive, there is a TM M that always halts, such that $L(M)=L$. We construct a TM M^{\prime} such that M^{\prime} accepts when M does not, and vice versa. M^{\prime} always halts and $L\left(M^{\prime}\right)=\bar{L}$

Corollary If L is in RE and \bar{L} is not in RE, then L cannot be a recursive language

Properties of RE languages

Theorem If L and \bar{L} are in RE, then L is recursive
Proof Let $L=L\left(M_{1}\right)$ and $\bar{L}=L\left(M_{2}\right)$. We build a multi-tape TM M that simulates M_{1} and M_{2} in parallel

If the input is in L, M_{1} accepts and halts, then also M accepts and halts. If the input is not in L, then M_{2} accepts and halts, so M rejects and halts

L and \bar{L}

Where can L and \bar{L} be placed ?
Combinatorially, there are 9 possible arrangements, but the theory allows only 4 of them

L and \bar{L}

Possible arrangements for L and \bar{L}

- both L and \bar{L} are recursive
- both L and \bar{L} are not in RE
- L is RE but not recursive, and \bar{L} is not RE
- \bar{L} is RE but not recursive, and L is not RE

It is not possible that a language is recursive and the complement is RE but not recursive or not RE

It is not possible that a language and its complement are both RE but not recursive

Example

Let us consider the language $\overline{L_{d}}$, which contains the strings w_{i} such that M_{i} accepts w_{i}

Since L_{d} is not RE, $\overline{L_{d}}$ is not recursive. It is possible that $\overline{L_{d}}$ is not RE, or alternatively RE but not recursive

We will prove later that $\overline{L_{d}}$ is RE but not recursive

Universal language

We want to encode pairs (M, w) consisting of

- one TM M with binary input alphabet
- one binary string w

We use enc (M) followed by 111, followed by w, and write enc (M, w).
Note: the sequence 111 never appears in enc (M)
The language L_{u}, called universal language, is the set

$$
L_{u}=\{\operatorname{enc}(M, w) \mid w \in L(M)\}
$$

In words, L_{u} is the set of binary strings that encode a pair (M, w) such that $w \in L(M)$

Universal TM

There exists a TM U, called universal TM, such that $L(U)=L_{u}$

Universal TM

U (multi-tape version) has four tapes

- tape 1 contains the input string enc (M, w)
- tape 2 simulates M^{\prime} 's tape, using the 0^{j} format for each X_{j} tape symbol, and 1 as cell separator
- tape 3 records M^{\prime} s state, using the 0^{j} format for each state q_{j}
- tape 4 : auxiliary copying tape, used to "enlarge" or "shrink" the available space for the 0^{j} representations in tape 2

Universal TM

Strategy exploited by U

- if enc (M) is invalid, U halts and rejects (in this case $L(M)=\varnothing)$
- write w on tape 2 using 1 as separator, 0^{1} for $0=X_{1}$, and 0^{2} for $1=X_{2}$
No encoding for B, use U's blank
- write the initial state on tape 3 , using 0 for q_{1}, and place the tape head of tape 2 on the first cell
- search on tape 1 for a transition of the form $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$, where
- 0^{i} is the state on tape 3
- 0^{j} is M 's tape symbol under the tape head of tape 2

Universal TM

Strategy exploited by U (cont'd)

- in order to simulate trasition $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$, the TM U
- replaces the content of tape 3 with 0^{k} (new state)
- replaces 0^{j} on tape 2 with 0^{\prime} (new tape symbol); if needed, we can "enlarge" or "shrink" U's tapes using the auxiliary tape (tape 4)
- move the tape head of tape 2 to the left if $m=1$ or to the right if $m=2$, until the next 1 is reached (separator)
- if there is no transition $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}, M$ halts and U halts as well
- if M reaches a final state, then U halts and accepts

Universal language

Theorem L_{u} is in RE but is not recursive
Proof L_{u} is in RE, since we have built the TM U
Let us assume that L_{u} is recursive. Then $\overline{L_{u}}$ is also recursive
Let M be a TM such that $L(M)=\overline{L_{u}}$. We build a new TM M^{\prime} for L_{d} as follows (example of a reduction, a notion which we will introduce in the next section)

Universal language

On input $w=w_{i}, M^{\prime}$ builds enc $\left(M_{i}, w_{i}\right)=w_{i} 111 w_{i}$
M always halts, and accepts if and only if $w_{i} \notin L\left(M_{i}\right)$. As a consequence, M^{\prime} always halts, and $L\left(M^{\prime}\right)=L_{d}$

We have a contradiction, since L_{d} is not recursive

The halting problem

Given a TM M, we define $H(M)$ the set of strings w such that M halts with input w

Let us consider the language L_{h}, called the halting problem

$$
L_{h}=\{\operatorname{enc}(M, w) \mid w \in H(M)\}
$$

There exists a TM M such that $L(M)=L_{h}: M$ takes as input a pair enc $\left(M^{\prime}, w\right)$ and simulates a computation of M^{\prime} on w
M accepts whenever M^{\prime} halts on w
Therefore L_{h} is a RE language

The halting problem

We can prove that L_{h} is not recursive (proof omitted)
Hence there is no algorithm that can state whether a given program ends or not on a given input

However, there exists a procedure that

- halts, if a given program ends on a given input
- cycles, if a given program does not end on a given input

Reduction

Given a problem P_{1} known to be "difficult", we want to know whether a second problem P_{2} under investigation is as hard as, or even harder than, P_{1}

To this end we show that, if we could solve P_{2}, then we could also solve P_{1}, written

$$
P_{1} \leqslant m P_{2}
$$

This notation is not used in the book
This technique is called reduction of P_{1} to P_{2}

Reduction

P_{1}
P_{2}
A reduction from P_{1} to P_{2} is an algorithm that converts an instance x of P_{1} into an instance y of P_{2}, such that

- if x has positive answer then y has positive answer
- if x has negative answer then y has negative answer

Reduction

Let $P_{1} \leqslant{ }_{m} P_{2}$, and assume there exists an algorithm that solves P_{2}. Given an instance x for P_{1}

- we use the reduction to convert x to an instance y for P_{2}
- we use the algorithm for P_{2} to decide whether y is in P_{2} or not Whatever the answer is, it is also valid for x in P_{1}

We have built an algorithm that solves P_{1}. Thus solving P_{2} is at least as difficult as solving P_{1}

Reduction

Theorem If $P_{1} \leqslant m P_{2}$, then

- if P_{1} is undecidable, so is P_{2}
- if P_{1} is not RE, so is P_{2}

Proof (First part) Let us assume that P_{2} is decidable

- we apply the reduction to transform instance x of P_{1} into instance y of P_{2}
- we apply on y the algorithm to decide P_{2}

We found an algorithm to decide P_{1}, which is a contradiction

Reduction

(Second part) Let us assume that P_{2} is RE

- we apply the reduction to transform instance x of P_{1} into instance y of P_{2}
- we apply on y the algorithm to accept P_{2} (it does not halt if y is a negative instance)
We have found a TM to accept P_{1} (which does not halt if x is a negative instance). But this is a contradiction

TM accepting non-empty languages

We consider two languages formed by TM encodings

$$
\begin{aligned}
L_{e} & =\{\operatorname{enc}(M) \mid L(M)=\varnothing\} \\
L_{n e} & =\{\operatorname{enc}(M) \mid L(M) \neq \varnothing\}
\end{aligned}
$$

Note: $\overline{L_{e}}=L_{n e}$
We want to find out whether these languages are recursive, or RE but not recursive, or else non-RE

TM accepting non-empty languages

Theorem $L_{n e}$ is RE
Proof We construct a nondeterministic TM M with $L(M)=L_{n e}$

Given M_{i} as input, M implements the following strategy

- using nondeterminism, guess a string w
- simulate U on M_{i} and w

TM accepting non-empty languages

M accepts M_{i} if and only if there exists w such that $w \in L\left(M_{i}\right)$
The theorem then follows from the equivalence between nondeterministic TM and TM

TM accepting non-empty languages

Theorem $L_{n e}$ is non-recursive
Proof We show that $L_{u} \leqslant_{m} L_{n e}$. Since L_{u} is non-recursive, it follows that even $L_{n e}$ is non-recursive

The reduction uses as target instances only (the encoding of) two languages in $L_{n e}$:

- the language Σ^{*} (positive instance)
- the empty language \varnothing (negative instance)

TM accepting non-empty languages

Let us transform any instance enc (M, w) of L_{u} into an instance M^{\prime} of $L_{n e}$ defined as follows

M^{\prime} ignores its input and uses its finite control to simulate a computation of M on w

- if M accepts w, then M^{\prime} accepts any input, that is, $L\left(M^{\prime}\right)=\Sigma^{*}$; thus $L\left(M^{\prime}\right) \neq \varnothing$
- if M does not accept w, then M^{\prime} does not accept any input, that is, $L\left(M^{\prime}\right)=\varnothing$;

TM accepting empty languages

Theorem L_{e} is not in RE
Proof We have already observed that $\overline{L_{e}}=L_{n e}$
Since $L_{n e}$ is RE but is not recursive, L_{e} cannot be in RE (if it were, then L_{e} and $L_{n e}$ would both be recursive)

Properties of the languages generated by TMs

Languages L_{e} and $L_{n e}$ are associated with decision problems related to properties of RE languages (languages generated by TMs)

Instances of these decision problems are TMs, not languages, since the former are finite objects and the latter are infinite objects

Our computations take as input finite objects

In what follows, we will be concerned with more general properties of RE languages, and the associated decision problems

The fact that L_{e} and $L_{n e}$ are undecidable is a special case of a more general theorem, known as Rice's Theorem

Properties of the languages generated by TMs

A property of the RE languages is trivial if it is satisfied by all or by none of the RE languages

Rice's theorem states that all properties \mathcal{P} of the RE languages that are nontrivial are undecidable

This means that, for any nontrivial property \mathcal{P}, there is no TM that

- always halts
- given as input enc $\left(M_{i}\right)$, decides whether the language $L\left(M_{i}\right)$ satisfies \mathcal{P}

Example

Checking whether a TM accepts a context-free language is undecidable

In fact, the property of the RE languages "to be CFL" is nontrivial

- some RE languages are CFL
- not all RE languages are CFL

Therefore the above statement follows from Rice's theorem

Properties of the languages generated by TMs

We identify a property of the RE languages with the subset of RE languages that satisfy \mathcal{P}

The language $L_{\mathcal{P}}$ is the set of encodings enc $\left(M_{i}\right)$ of all TMs M_{i} such that $L\left(M_{i}\right) \in \mathcal{P}$

$$
L_{\mathcal{P}}=\left\{\operatorname{enc}\left(M_{i}\right) \mid L\left(M_{i}\right) \in \mathcal{P}\right\}
$$

Note that we are representing RE languages by means of encodings of TMs
\mathcal{P} is decidable if and only if $L_{\mathcal{P}}$ is recursive

Rice's theorem

Theorem Any nontrivial property of RE languages is undecidable
Proof Let \mathcal{P} be a nontrivial property of the RE languages. Let us assume by now that $\varnothing \notin \mathcal{P}$

Let $L \in \mathcal{P}$ and let M_{L} be a TM such that $L\left(M_{L}\right)=L$
We prove that $L_{u} \leqslant_{m} L_{\mathcal{P}}$ using as target instances only (the encoding of) two languages

- $L\left(M_{L}\right)$ (positive instance)
- \varnothing (negative instance)

Then the theorem follows from the fact that L_{u} is undecidable

Rice's theorem

Given an instance enc (M, w) for L_{u}, we produce an instance enc $\left(M^{\prime}\right)$ of $L_{\mathcal{P}}$

- if M does not accept w, M^{\prime} does not accept any input string, and thus $L\left(M^{\prime}\right)=\varnothing \notin \mathcal{P}$
- if M accepts w, M^{\prime} simulates M_{L} on x, and thus $L\left(M^{\prime}\right)=L \in \mathcal{P}$

Rice's theorem

Let us now assume that $\varnothing \in \mathcal{P}$. We consider $\overline{\mathcal{P}}$, the set of RE languages that do not satisfy the property \mathcal{P}

Since $\varnothing \notin \overline{\mathcal{P}}$, the above argument proves that $L_{u} \leqslant_{m} L_{\overline{\mathcal{P}}}$. Therefore $L_{\overline{\mathcal{P}}}$ is not recursive

Each TM accepts some RE language. Therefore we have

$$
\overline{L_{\mathcal{P}}}=L_{\overline{\mathcal{P}}}
$$

If $L_{\mathcal{P}}$ were recursive, then $L_{\overline{\mathcal{P}}}$ would be recursive as well. This is a contradiction with respect to what we have previously asserted \square

Example

From Rice's theorem we have that the following problems are undecidable

- is the language accepted by a TM the empty language ? (already seen)
- is the language accepted by a TM a finite language ?
- is the language accepted by a TM a regular language ?
- is the language accepted by a TM a context-free language ?
- does the language accepted by a TM contain the string 01 ?
- does the language accepted by a TM contain all even numbers?

Properties not inherent to the accepted language

In contrast with properties of RE languages, not all problems regarding TM are undecidable

Problems that concern the states or the transitions of a TM, and not the accepted language, can be decided

Example: the following problems can be decided

- does a TM have five states ?
- is there any input such that the TM performs at least five steps before halting ?
- does a TM contain a certain transition ?
- starting with the empty tape, does the TM reach state p in at most 5 steps ?

Post's correspondence problem

We now investigate "real" problems, i.e., problems that do not concern TMs

We show that Post's correspondence problem, which refers to strings, is undecidable, using the following reductions

Later we will use this result to show that other real-world problems are undecidable

Post's correspondence problem

An instance of Post's correspondence problem, or PCP for short, is formed by two equal length lists of strings

$$
\begin{aligned}
A & =w_{1}, w_{2}, \ldots, w_{k} \\
B & =x_{1}, x_{2}, \ldots, x_{k}
\end{aligned}
$$

where $w_{i}, x_{j} \in \Sigma^{+}$and Σ is an alphabet with at least two symbols
Instance (A, B) has a solution if there are $m \geqslant 1$ indices
$i_{1}, i_{2}, \ldots, i_{m}$ such that

$$
w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}
$$

Example

PCP instance with $\Sigma=\{0,1\}$

	A	B
i	w_{i}	x_{i}
1	1	111
2	10111	10
3	10	0

A possible solution is provided by the indices: $m=4, i_{1}=2, i_{2}=1, i_{3}=1, i_{4}=3$

$$
w_{2} w_{1} w_{1} w_{3}=x_{2} x_{1} x_{1} x_{3}=101111110
$$

Possible solutions are also all repetitions of 2,1,1,3

Example

PCP instance with $\Sigma=\{0,1\}$

	A	B
i	w_{i}	x_{i}
1	10	101
2	011	11
3	101	011

This instance has no solution. To prove this, let us assume $i_{1}, i_{2}, \ldots, i_{m}$ is a solution

If $i_{1}=2$ or $i_{1}=3$ we have a mismatch at the first position. Then we must have $i_{1}=1$

If $i_{2}=1$ or $i_{2}=2$ we still have a mismatch. Then we must have $i_{2}=3$

Example

We thus have the partial solution

$$
\begin{array}{lllllllll}
w_{1} w_{3} & = & 1 & 0 & 1 & 0 & 1 & \cdots & \\
x_{1} x_{3} & = & 1 & 0 & 1 & 0 & 1 & 1 & \cdots
\end{array}
$$

If $i_{3}=1$ or $i_{3}=2$ we still have a mismatch. Then we must have $i_{3}=3$, providing the partial solution

$$
\begin{array}{llllllllllll}
w_{1} w_{3} w_{3} & = & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & \cdots & \\
x_{1} x_{3} x_{3} & = & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & \ldots
\end{array}
$$

We are now back to the previous scenario, forcing us to choose $i_{4}=3, i_{5}=3, \ldots$ and we will never reach a complete solution

Modified Post's correspondence problem

An instance of the modified PCP, MPCP for short, is an instance (A, B) of PCP
(A, B) has a solution if there are $m \geqslant 0$ indices $i_{1}, i_{2}, \ldots, i_{m}$ such that

$$
w_{1} w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}}=x_{1} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}
$$

Note: (w_{1}, x_{1}) must be the starting choice, and m can be 0

Reduction

We present a transformation from instances (M, w) of L_{u} to instances (A, B) of the MPCP problem. We will later prove that this transformation is a reduction

Idea

- we assume semi-infinite tape TM with ID's without any blank, as in a previous theorem
- we represent M's computations as strings of the form

$$
\# \alpha_{1} \# \alpha_{2} \# \alpha_{3} \# \cdots
$$

where each α_{i} is an ID

- we use fictitious ID's that erase the tape when a final state is reached (needed to realign)

Reduction

Idea (cont'd)

- partial solutions of (A, B) simulate computations of M on w
- in a partial solution, the list obtained by A is always one ID behind with respect to the list obtained by B

$$
\begin{array}{lllll}
\ell_{A}: & \# \alpha_{1} & \cdots & \# \alpha_{i-1} & \\
\ell_{B}: & \# \alpha_{1} & \cdots & \# \alpha_{i-1} & \# \alpha_{i}
\end{array}
$$

- the pairs $\left(w_{i}, x_{i}\right)$ are used, through several steps, to
- copy $\# \alpha_{i}$ from ℓ_{B} into ℓ_{A}
- add to ℓ_{B} the new string $\# \alpha_{i+1}$, which simulates the next move of M

Reduction

Transformation: input $(M, w), M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$

- Pairs of type 1 : initial ID

$$
\begin{array}{ll}
A & B \\
\hline \# & \# q_{0} w \#
\end{array}
$$

- Pairs of type 2 : copy tape symbols and \#

$$
\begin{array}{lll}
A & B & \\
\hline X & X & \text { for each } X \in \Gamma \\
\# & \# &
\end{array}
$$

Reduction

Transformation (cont'd)

- Pairs of type 3: simulate next move for $q \in Q \backslash F$

A	B	
$q X$	$Y p$	if $\delta(q, X)=(p, Y, R)$
$Z q X$	$p Z Y$	if $\delta(q, X)=(p, Y, L)$
$q \#$	$Y p \#$	if $\delta(q, B)=(p, Y, R)$
$Z q \#$	$p Z Y \#$	if $\delta(q, B)=(p, Y, L)$

Reduction

Transformation (cont'd)

- Pairs of type 4 : for $q \in F$, erase working tape

A	B
$X q Y$	q
$X q$	q
$q Y$	q

- Pairs of type 5: align the two lists, after the tape has been erased

$$
\begin{array}{ll}
A & B \\
\hline q \# \# & \#
\end{array}
$$

Example

Instance of $L_{u}:(M, 01)$
$M=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{0,1\},\{0,1, B\}, \delta, q_{1}, B,\left\{q_{3}\right\}\right)$

q_{i}	$\delta\left(q_{i}, 0\right)$	$\delta\left(q_{i}, 1\right)$	$\delta\left(q_{i}, B\right)$
$\rightarrow q_{1}$	$\left(q_{2}, 1, R\right)$	$\left(q_{2}, 0, L\right)$	$\left(q_{2}, 1, L\right)$
q_{1}	$\left(q_{3}, 0, L\right)$	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, 0, R\right)$
$\star q_{3}$	-	-	-

Example

List of pairs

type	w_{i}	x_{i}	derived from
(1)	$\#$	$\# q_{1} 01 \#$	
(2)	0	0	
	1	1	
	$\#$	$\#$	

Example

List of pairs (cont'd)

type	w_{i}	x_{i}	derived from
(3)	$q_{1} 0$	$1 q_{2}$	from $\delta\left(q_{1}, 0\right)\left(q_{2}, 1, R\right)$
	$0 q_{1} 1$	$q_{2} 00$	from $\delta\left(q_{1}, 1\right)\left(q_{2}, 0, L\right)$
	$1 q_{1} 1$	$q_{2} 10$	from $\delta\left(q_{1}, 1\right)\left(q_{2}, 0, L\right)$
	$0 q_{1} \#$	$q_{2} 01 \#$	from $\delta\left(q_{1}, B\right)\left(q_{2}, 1, L\right)$
	$1 q_{1} \#$	$q_{2} 11 \#$	from $\delta\left(q_{1}, B\right)\left(q_{2}, 1, L\right)$
	$0 q_{2} 0$	$q_{3} 00$	from $\delta\left(q_{2}, 0\right)\left(q_{3}, 0, L\right)$
	$1 q_{2} 0$	$q_{3} 10$	from $\delta\left(q_{2}, 0\right)\left(q_{3}, 0, L\right)$
	$q_{2} 1$	$0 q_{1}$	from $\delta\left(q_{2}, 1\right)\left(q_{1}, 0, R\right)$
	$q_{2} \#$	$0 q_{2} \#$	from $\delta\left(q_{2}, B\right)\left(q_{2}, 0, R\right)$

Example

List of pairs (cont'd)

type	w_{i}	x_{i}	derived from
(4)	$0 q_{3} 0$	$q_{3} \#$	
	$0 q_{3} 1$	$q_{3} \#$	
	$1 q_{3} 0$	$q_{3} \#$	
	$1 q_{3} 1$	$q_{3} \#$	
	$0 q_{3}$	$q_{3} \#$	
	$1 q_{3}$	$q_{3} \#$	
	$q_{3} 0$	$q_{3} \#$	
	$q_{3} 1$	$q_{3} \#$	
(5)	$q_{3} \# \#$	$\#$	

Example

M accepts input 01 through the following computation

$$
q_{1} 01 \vdash_{M} 1 q_{2} 1 \vdash_{M} 10 q_{1} \vdash_{M} 1 q_{2} 01 \vdash_{M} q_{3} 101
$$

We consider the partial solutions of MPCP associated with the above computation

First pair is mandatory, and simulates the initial ID

$$
\begin{aligned}
& \ell_{A}: \# \\
& \ell_{B}: \# q_{1} 01 \#
\end{aligned}
$$

We have only one way to expand the partial solution, that is, use the pair $\left(q_{1} 0,1 q_{2}\right)$ which simulates the first move

$$
\begin{aligned}
& \ell_{A}: \quad \# q_{1} 0 \\
& \ell_{B}: \quad \# q_{1} 01 \# 1 q_{2}
\end{aligned}
$$

Example

We apply three pairs for copying, in order to reach the next state

$$
\begin{array}{ll}
\ell_{A}: & \# q_{1} 01 \# 1 \\
\ell_{B}: & \# q_{1} 01 \# 1 q_{2} 1 \# 1
\end{array}
$$

We apply pair $\left(q_{2} 1,0 q_{1}\right)$ to simulate the second move

$$
\begin{aligned}
& \ell_{A}: \# q_{1} 01 \# 1 q_{2} 1 \\
& \ell_{B}: \quad \# q_{1} 01 \# 1 q_{2} 1 \# 10 q_{1}
\end{aligned}
$$

And so forth ...

PCP

Theorem $L_{u} \leqslant_{m}$ MPCP
Proof (sketch) We need to show that, for the previous transformation, (M, w) has a solution if and only if (A, B) has a solution
(only if) If $w \in L(M)$ there exists an accepting computation. Then the partial solution ℓ_{A} reaches ℓ_{B} and (A, B) has a solution
(if) Every solution of (A, B) starts with the initial ID of M on w, proceeds with the simulation of some moves of M, and stops when M reaches an accepting state. Therefore $w \in L(M)$

PCP

Theorem MPCP $\leqslant_{m} \mathrm{PCP}$
Proof not required
Theorem PCP is undecidable
Proof From $L_{u} \leqslant_{m}$ MPCP and from MPCP $\leqslant_{m} \mathrm{PCP}$, we conclude that $L_{u} \leqslant_{m} \mathrm{PCP}$
Composition of two reductions is still a valid reduction

CFG ambiguity

We assume a binary encoding for CFGs, similar to the one used for TM

We write enc (G) for the encoding of CFG G
The ambiguity problem for a CFG is defined as follows

- the instances are the strings enc (G) where G is a CFG
- the answer is positive if G is ambiguous

We define the corresponding language

$$
L_{A M B}=\{\operatorname{enc}(G) \mid G \text { is ambiguous }\}
$$

Reduction

We present a transformation from PCP to instances of the $L_{A M B}$ problem. We will later prove that this transformation is a reduction Let (A, B) be an instance of PCP over the alphabet Σ, where $A=w_{1}, w_{2}, \ldots, w_{k}$ and $B=x_{1}, x_{2}, \ldots, x_{k}$

Let G_{A} be a CFG defined as

- nonterminal set $\{A\}$
- alphabet $\Sigma \cup\left\{a_{i} \mid 1 \leqslant i \leqslant k\right\}$, where a_{i} is an alias for the pair w_{i}, x_{i}
- production set

$$
\begin{aligned}
A & \rightarrow w_{1} A a_{1}\left|w_{2} A a_{2}\right| \cdots \mid w_{k} A a_{k} \\
& \rightarrow w_{1} a_{1}\left|w_{2} a_{2}\right| \cdots \mid w_{k} a_{k}
\end{aligned}
$$

Example

Strings generated by G_{A} have the form $w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}} a_{i_{m}} \cdots a_{i_{2}} a_{i_{1}}$, with $m \geqslant 1$

Automata, Languages and Computation

Reduction

Symmetrically, let G_{B} be a CFG defined as

- nonterminal set $\{B\}$
- alphabet $\sum \cup\left\{a_{i} \mid 1 \leqslant i \leqslant k\right\}$
- production set

$$
\begin{aligned}
B & \rightarrow x_{1} B a_{1}\left|x_{2} B a_{2}\right| \cdots \mid x_{k} B a_{k} \\
& \rightarrow x_{1} a_{1}\left|x_{2} a_{2}\right| \cdots \mid x_{k} a_{k}
\end{aligned}
$$

Reduction

We observe that G_{A} and G_{B} are unambiguous
We define $L_{A}=L\left(G_{A}\right)$ and $L_{B}=L\left(G_{B}\right)$
$G_{A B}$ is the CFG that generates the language $L_{A} \cup L_{B}$

- nonterminal set $\{S, A, B\}$
- alphabet $\Sigma \cup\left\{a_{i} \mid 1 \leqslant i \leqslant k\right\}$
- production set $S \rightarrow A \mid B$ and in addition all productions of G_{A} and G_{B}

$L_{A M B}$

Theorem PCP $\leqslant_{m} L_{A M B}$
Proof (sketch) We need to show that, for the given reduction, enc $\left(G_{A B}\right) \in L_{A M B}$ if and only if (A, B) has a solution
(If part) Let $i_{1}, i_{2}, \ldots, i_{m}$ be a solution for (A, B). Then $G_{A B}$ has two derivations for the same string

$$
\begin{aligned}
S & \Rightarrow A \Rightarrow w_{i_{1}} A a_{i_{1}} \Rightarrow w_{i_{1}} w_{i_{2}} A a_{i_{2}} a_{i_{1}} \Rightarrow \cdots \\
& \Rightarrow w_{i_{1}} w_{i_{2}} \cdots w_{i_{m}} a_{i_{m}} \cdots a_{i_{2}} a_{i_{1}} \\
S & \Rightarrow B \Rightarrow x_{i_{1}} B a_{i_{1}} \Rightarrow x_{i_{1}} x_{i_{2}} B a_{i_{2}} a_{i_{1}} \Rightarrow \cdots \\
& \Rightarrow x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}} a_{i_{m}} \cdots a_{i_{2}} a_{i_{1}}
\end{aligned}
$$

$L_{A M B}$

(Only if part) Assume $G_{A B}$ is ambiguous. Consider an ambiguous string in $L\left(G_{A B}\right)$, having the form

$$
z a_{i_{m}} \cdots a_{i_{2}} a_{i_{1}}
$$

with $z \in \Sigma^{+}$
Since G_{A} and G_{B} are not ambiguous, the ambiguous string must have two leftmost derivations starting with $S \Rightarrow A$ and $S \Rightarrow B$

Then $i_{1}, i_{2}, \ldots, i_{m}$ is a solution for (A, B)

CFG problems

Let G_{1} and G_{2} be CFGs, and let R be a regular expression. The following problems are undecidable

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L(R)$?
- $L\left(G_{1}\right)=T^{*}$, for a fixed alphabet T ?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L(R) \subseteq L\left(G_{1}\right)$?

