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1. [5 points] Let E be a regular expression and let R be the reversal operator. Specify the construction
presented in the textbook for converting E into a regular expression ER such that L(ER) = (L(E))R,
and prove the equivalence relation using structural induction.

Solution

The required construction along with the proof of the relation L(ER) = (L(E))R is reported in
Theorem 4.11 from Chapter 4 of the textbook.

2. [7 points] Let Σ = {a, b}. For w ∈ Σ∗ and X ∈ Σ, we write #X(w) to denote the number of
occurrences of X in w. Consider now the following two languages

L1 = {w | 0 ≤ #a(w) ≤ #b(w)} ;

L2 = {w | 0 ≤ #a(w) ≤ #b(w) ≤ 17} .

(a) Prove that L1 is not REG.

(b) Show that L1 is in CFL.

(c) Argue that L2 is in REG.

Solution

(a) L1 is not in REG. To show this, we apply the pumping lemma for the class REG.

Let N be the pumping lemma constant for L1. We choose the string w = aNbN ∈ L1 with
|w| ≥ N , and we consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N . Because of the latter condition, we have that y can only contain occurrences of
symbol a.

According to the pumping lemma, the string wk = xykz should be in L1 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 2. We then have w2 = aN+mb2N . From m ≥ 1, it is immediate
to see that w2 ̸∈ L1, since in w2 the number of occurrences of symbol a exceeds the number of
occurrences of symbol b. We thus conclude that L1 is not a regular language.

(b) L1 is in CFL. To show this, we informally describe a PDA M such that L(M) = L1. M has state
set Q = {q0, q1}, with q0 the inital state and q1 the only final state. The stack symbol set of M
is Γ = {A,B,Z0}, with Z0 the initial stack symbol.

Computations of M are informally described in what follows.

• In state q0 and with Z0 at the top of the stack, if M reads a it pushes A into the stack, if M
reads b it pushes B into the stack; M stays in state q0.



• In state q0 and with A at the top of the stack, if M reads a it pushes A into the stack, if M
reads b it pops A from the stack; M stays in state q0.

• In state q0 and with B at the top of the stack, if M reads b it pushes B into the stack, if M
reads a it pops B from the stack; M stays in state q0.

• In state q0 and with B or Z0 at the top of the stack, M can nondeterministically take an
ε-transition and move to final state q1, from which no further move is possible.

We observe that at any time in the computation, symbol Z0 is always at the bottom of the stack,
and symbols A and B cannot be both present in the stack. If the stack contains some A, then the
number of a’s that have been processed exceeds the number of b’s. Symmetrically, if the stack
contains some B, then the number of b’s that have been processed exceeds the number of a’s.
Finally, if the stack contains only Z0, then an equal number of a’s and b’s have been processed.
From the above, it is not difficult to see that L(M) = L1.

(c) L2 is in REG. To see this, we observe that a string in L2 can have at most 17 occurrences of a
and at most 17 occurrences of b. This means that strings in L2 have length bounded by 34, and
thus L2 is a finite language. Since finite languages are all in REG, we have completed the proof.

3. [5 points] With reference to the membership problem for context-free languages, answer the following
two questions.

(a) Specify the dynamic programming algorithm developed in class for the solution of this problem.

(b) Consider the CFG G defined by the following rules:

S → BC

B → BB | b
C → BC | c

Assuming as input the CFG G and the string w = bbbbc, trace the application of the above
algorithm.

Solution

(a) The required dynamic programming algorithm is reported in Section 7.4.4 from Chapter 7 of the
textbook.

(b) The algorithm constructs a table filling its rows one by one, in a bottom-up way. Each entry
in the table is filled with a set of variables of the grammar. On input w and G, the algorithm
constructs the table reported below.



b b b b c

{B} {B} {B} {B} {C}

{B} {B} {B} {S,C}

{B} {B} {S,C}

{B} {S,C}

{S,C}

4. [6 points] Consider the alphabet Σ = {a, b} and the DFA A over Σ whose transition function is
graphically represented as

q0 q1 q2
Start

a

b

a

b

a, b

(a) Describe in words the language L(A).

(b) For each state q of A, provide a definition for properties Pq in such a way that, for any string
x ∈ {a, b}∗, we have

Pq(x) ⇔ δ̂(q0, x) = q .

(c) Using mutual induction, prove δ̂(q0, x) = q1 ⇒ Pq1(x).

Solution

(a) DFA A accepts the language L defined as the set of all strings over {a, b} that contain exactly
one occurrence of symbol b.

(b) For x ∈ Σ∗ and X ∈ Σ, we write #X(x) to denote the number of occurrences of X in x. We can
define the required properties as follows. For every x ∈ {a, b}∗:

• Pq0(x) holds if and only if #b(x) = 0;

• Pq1(x) holds if and only if #b(x) = 1, which amounts to x ∈ L;

• Pq2(x) holds if and only if #b(x) > 1.

(c) Proof of δ̂(q0, x) = q1 ⇒ Pq1(x). The proof is by mutual induction on the length of x.

Base. We have |x| = 0, that is, x = ε. Since δ̂(q0, x) = q1 is false, the implication is true.

Induction. Let |x| = n > 0. We can then write x = yY , where Y ∈ {a, b}, y ∈ {a, b}∗, and
|y| = n− 1. We need to distinguish two cases.



• Case 1: Y = a. An inspection of the graphical representation of the transition function
of A shows that the DFA was already in state q1 after reading the prefix string y, that is,
δ̂(q0, y) = q1. Since |y| = n− 1, we can apply induction, that is, we can use the implication
δ̂(q0, y) = q1 ⇒ Pq1(y). From the definition of Pq1(y) we have that #b(y) = 1. Since Y = a,
we conclude that #b(x) = 1 as well, and therefore Pq1(x) holds true, as desired.

• Case 2: Y = b. From the transition function of the automaton, we derive that A can only
have reached state q1 coming from state q0, that is, δ̂(q0, y) = q0. Since |y| = n− 1, we apply
mutual induction and use the implication δ̂(q0, y) = q0 ⇒ Pq0(y). We then conclude that
Pq0(y) holds true. This means that #b(y) = 0 and, since Y = b, we derive #b(x) = 1, that
is, Pq1(x) holds true, as desired.

5. [3 points] Define the Post correspondence problem (PCP) and discuss a simple example.

Solution

The required definition along with some examples can be found in Section 9.4.1 from Chapter 9 of the
textbook.

6. [7 points] Consider the following property of the RE languages defined over the alphabet Σ = {0, 1}

P = {L | L ∈ RE, for every pair u, v ∈ L we have u · v ̸∈ L}

and define LP = {enc(M) | L(M) ∈ P}. Assess whether the language LP belongs to the classes REC,
RE∖REC, or else does not belong to RE.

Solution Language LP is not in REC. To prove this, we use Rice’s theorem and show that property
P is not trivial. First, consider the finite language L1 = {01, 10, 11, 00}, which is in RE. Since every
string in L1 has length 2, it follows that the concatenation of every pair of strings from L1 provides
a string of length 4, which is not in L1. Therefor L1 has the property P, and thus P is not empty.
Second, consider the finite language L2 = {0, 00, 000}, which is in RE. For the pair of strings 0, 00 ∈ L2

we have 0 · 00 = 000 ∈ L2. Therefor L2 does not have the property P, and thus P is not the whole
class RE. We then conclude that property P is not trivial.

Consider now the complement of set P with respect to RE

P = {L | L ∈ RE, for some pair u, v ∈ L we have u · v ∈ L}

and define LP = {enc(M) | L(M) ∈ P}. It is easy to see that LP = LP .

Since LP is not in REC, from a theorem of Chapter 9 in the textbook we have that LP cannot be in
REC.

We now argue that LP belongs to RE. To see this, we can specify a nondeterministic TM N such that
L(N) = LP . Since every nondeterministic TM can be converted into a standard TM, we conclude
that LP is in RE.

Our nondeterministic TM N takes as input the encoding of a TM M and performs the following steps.

• N nondeterministically guesses three strings w1, w2, w3 ∈ Σ∗ and checks that each wi is in L(M)
by simulating the universal TM on input enc(M,wi).



• If the previous step terminates and is successful, N tests the equality w1w2 = w3, and answers
accordingly. In all other cases, N answers no or runs for ever.

It is not difficult to see that L(N) = LP .

Since LP is in RE, if its complement language LP were in RE as well, then we would conclude that
both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have already shown
that LP is not in REC. We must therefore conclude that LP is not in RE.


