Master Degree in Computer Engineering

Automata, Languages and Computation Final Exam

September 19th, 2022

1. [5 points] Consider the DFA A whose transition function is graphically represented below, where arcs with double direction represent two arcs in opposite directions.

(a) Provide the definition of equivalent pair of states for a DFA.
(b) Apply to A the tabular algorithm for detecting pairs of equivalent states, reporting all the intermediate steps.
(c) Specify the minimal DFA equivalent to A.
2. [8 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b\}$

$$
\begin{aligned}
& L_{1}=\left\{w \mid w=a^{p} b a^{q}, p, q \geq 0,1 \leq p+q\right\} \\
& L_{2}=\left\{w \mid w=a^{p} b a^{q}, p, q \geq 0,1 \leq p-q\right\} \\
& L_{3}=\left\{w \mid w=a^{p} b a^{q}, p, q \geq 0, p=q^{3} \text { or } q=p^{3}\right\}
\end{aligned}
$$

For each of the above languages, state whether it belongs to the class REG. Provide a mathematical proof for all of your answers.
3. [5 points] Let G be some CFG in CNF. Let T be a parse tree for a string $w \in L(G)$. Using structural induction, prove that if the longest path in T has n arcs then $|w| \leq 2^{n-1}$
4. [5 points] Consider the following language, defined over the alphabet $\Sigma=\{a, b\}$

$$
L=\left\{w \mid w \in \Sigma^{*}, w=a^{n} b^{2 n}, n \geq 1\right\} .
$$

Define a Turing machine M such that $L(M)=L$ and M stops for every possible input in Σ^{*}. Graphically represent the transition function of M and provide an informal discussion of the computation associated with each state of M.
5. [8 points] Let A be some fixed DFA with input alphabet $\Sigma=\{0,1\}$ such that $L(A)$ is not finite and $L(A) \neq \Sigma^{*}$. Define the following property of the RE languages over Σ

$$
\mathcal{P}=\left\{L \mid L \in \mathrm{RE}, L \subseteq \Sigma^{*}, L \cap L(A)=\emptyset\right\} .
$$

(a) Apply Rice's theorem to prove that $L_{\mathcal{P}}$ is not in REC.
(b) Prove that $L_{\overline{\mathcal{P}}}$ is in RE but not in REC, where $\overline{\mathcal{P}}$ is the complement of \mathcal{P} with respect to all languages over Σ that are in RE.
(c) Prove that $L_{\mathcal{P}}$ is not in RE.
6. [2 points] Let $\mathcal{N P}$ be the class of languages that can be recognised in polynomial time by a nondeterministic TM. State whether the relation $\mathcal{N} \mathcal{P} \subseteq$ REC holds, and motivate your answer.

