Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation
February 21st, 2022

1. [5 points] In relation to the notion of regular expression, answer the following questions.
(a) Provide the recursive definition of regular expression E over an alphabet Σ and the generated language $L(E)$.
(b) Using structural induction, prove that a regular expression E over Σ without the Kleene operator ' $*$ ' generates a finite language.

Solution

(a) The required definition can be found in Chapter 2 of the textbook, Section 3.1.2.
(b) Base case: $E=\epsilon, E=\emptyset$, or $E=\boldsymbol{a}$ for $a \in \Sigma$. These regular expressions do not have any occurrence of the Kleene operator and generate a finite language by definition.
Induction: Let E be a regular expression with no occurrence of the Kleene operator. According to the definition of regular expression in (a), we distinguish the following cases.
i. If $E=F+G$, then F and G do not have any occurrence of the Kleene operator. We can apply the inductive hypothesis, deriving that $L(F)$ and $L(G)$ are both finite. Since $L(E)=L(F) \cup L(G)$, we have $|L(E)| \leq|L(F)|+|L(G)|$ and thus $L(E)$ is finite as well.
ii. If $E=F G$, then F and G do not have any occurrence of the Kleene operator. We can apply the inductive hypothesis, deriving that $L(F)$ and $L(G)$ are both finite. Since $L(E)=$ $L(F) L(G)$, we have $|L(E)| \leq|L(F)| \cdot|L(G)|$ and thus $L(E)$ is finite.
iii. The case $E=F^{*}$ is not considered here, because E contains occurrence of the Kleene operator.
iv. If $E=(F)$, then F does not have any occurrence of the Kleene operator. We can apply the inductive hypothesis, deriving that $L(F)$ is finite. Since $L(E)=L(F), L(E)$ must be finite.
2. [$\mathbf{9}$ points] Consider the following languages, defined over the alphabet $\Sigma=\{0,1\}$

$$
\begin{aligned}
& L_{1}=\left\{w \mid w=u u, u \in \Sigma^{+}\right\} \\
& L_{2}=\left\{w \mid w=u x u, u \in \Sigma^{+}, x \in \Sigma^{*}\right\} \\
& L_{3}=\left\{w \mid w=\text { xuyuz, } u \in \Sigma^{+}, x, y, z \in \Sigma^{*}\right\}
\end{aligned}
$$

State whether the above languages are regular languages, and provide a mathematical proof of your answers.

Solution

(a) L_{1} is not a regular language. To prove this statement, we use the pumping lemma for regular languages. Let N be the pumping lemma constant. We choose the string $w=0^{N} 10^{N} 1 \in L_{1}$ with $|w| \geq N$, and consider all possible factorizations $w=x y z$ satisfying the conditions $|y| \geq 1$ and $|x y| \leq N$. Because of the latter condition, we have that y can only contain occurrences of symbol 0 from the left run 0^{N} in w.
According to the pumping lemma, the string $w_{k}=x y^{k} z$ should be in L_{1} for every $k \geq 0$. Let $|y|=m \geq 1$ and consider $k=0$. We then have $w_{0}=0^{N-m} 10^{N} 1$. Assuming that m is even, we can factorize w_{0} into two strings of equal length $w_{0}=u u^{\prime}$. It is easy to see that u ends with an occurrence of 0 , since $m \geq 1$, while u^{\prime} ends with an occurrence of 1 . Then $u \neq u^{\prime}$ and $w_{0} \notin L_{1}$, which is a contraddiction. We thus conclude that L_{1} is not a regular language.
(b) L_{2} is not a regular language. Let N be the pumping lemma constant. We choose the string $w=0^{N} 10^{N} 1 \in L_{2}$. Again, we have that y can only contain occurrences of symbol 0 from the left run 0^{N} in w.
According to the pumping lemma, the string $w_{k}=x y^{k} z$ should be in L_{2} for every $k \geq 0$. Let $|y|=m \geq 1$ and consider $k=2$. We then have $w_{2}=0^{N+m} 10^{N} 1$. For w_{2} to be in L_{2}, we must find a factorization $w_{2}=u x u^{\prime}$ such that $u=u^{\prime}$, where $u \in \Sigma^{+}$and $x \in \Sigma^{*}$. We observe that u^{\prime} must end with an occurrence of 1 . Thus we can only choose $u=0^{N+m} 1$. However, since $m \geq 1$, there is no choice for a string u^{\prime} to the right of u satisfying the desired equivalence $u=u^{\prime}$, because we only have N occurrences of symbol 0 to the right of u. We thus conclude that L_{2} is not a regular language.
(c) L_{3} is a regular language. Intuitively, we cannot apply to L_{3} the same reasoning in (a) and (b) above, because in a string in L_{3} we do not know where the boundaries for the two occurrences of u are placed.
Consider the language $L_{3}^{\prime}=\left\{w \mid w=x a y a z, a \in \Sigma, x, y, z \in \Sigma^{*}\right\} . L_{3}^{\prime}$ is a regular language and it can be generated by the following regular expression

$$
(\mathbf{0}+\mathbf{1})^{*} \mathbf{0}(\mathbf{0}+\mathbf{1})^{*} \mathbf{0}(\mathbf{0}+\mathbf{1})^{*}+(\mathbf{0}+\mathbf{1})^{*} \mathbf{1}(\mathbf{0}+\mathbf{1})^{*} \mathbf{1}(\mathbf{0}+\mathbf{1})^{*} .
$$

We show that $L_{3}=L_{3}^{\prime}$.
i. $L_{3}^{\prime} \subseteq L_{3}$. Any string $w \in L_{3}^{\prime}$ can be factorized as $w=x a y a z$ with $a \in \Sigma$ and $x, y, z \in \Sigma^{*}$. By letting $a=u \in \Sigma^{+}$, we immediately have $w \in L_{3}$.
ii. $L_{3} \subseteq L_{3}^{\prime}$. Any string $w \in L_{3}$ can be factorized as $w=x u y u z$, with $u \in \Sigma^{+}$and $x, y, z \in \Sigma^{*}$. We can write $u=a u^{\prime}$ with $a \in \Sigma$ and $u^{\prime} \in \Sigma^{*}$. This provides $w=x a u^{\prime} y a u^{\prime} z$, which implies $w \in L_{3}^{\prime}$.
3. [6 points] With reference to the class of context-free languages, answer the following questions.
(a) Define the notion of substitution over some alphabet Σ, and extend the definition to strings and languages.
(b) Prove that if L is a CFL defined over Σ and s is a substitution on Σ such that, for each $a \in \Sigma$, $s(a)$ is a CFL, then $s(L)$ is a CFL.

Solution

The required definition and proof can be found in Chapter 7 of the textbook, Section 7.3.1.
4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
(a) For strings $w_{1}, w_{2} \in \Sigma^{*}$, we say that w_{2} is a proper prefix of w_{1} if $w_{1}=w_{2} u$ for some $u \in \Sigma^{+}$. There exists an infinite regular language L such that, for any two strings $w_{1}, w_{2} \in L, w_{1}$ is not a proper prefix of w_{2}.
(b) There exist languages L_{1}, L_{3} in CFL \backslash REG and L_{2} in REG, all defined over the same alphabet Σ, such that $L_{1} \subseteq L_{2} \subseteq L_{3}$.
(c) The class \mathcal{P} of languages that can be recognized in polynomial time by a TM is closed under concatenation.

Solution

(a) True. Let $\Sigma=\{a, b\}$ and consider the infinite regular language $L=\left\{w \mid w=a^{n} b, n \geq 0\right\}$, which can be generated by the regular expression $\boldsymbol{a}^{*} \boldsymbol{b}$. Let $w_{1}=a^{p} b \in L$. String w_{1} is a proper prefix of some string w_{2} if and only if $w_{2}=a^{p} b a^{q}$ with $q \geq 1$. But then w_{2} cannot be in L.
(b) True. Let $\Sigma=\{a, b\}$ and consider the languages

$$
\begin{aligned}
& L_{1}=\left\{w \mid w=a^{n} b^{n}, n \geq 0\right\} \\
& L_{2}=\left\{w \mid w=a^{n} b^{m}, n, m \geq 0\right\} \\
& L_{3}=\left\{w \mid w=b^{n} a^{n}, n \geq 0\right\} \cup L_{2} .
\end{aligned}
$$

It is easy to show that L_{2} is in REG and L_{1}, L_{3} are CFL. Furthermore, using the pumping lemma, we can show that L_{1}, L_{3} are not in REG. The containments $L_{1} \subseteq L_{2}$ and $L_{2} \subseteq L_{3}$ directly follow from the language definitions.
(c) True. Let L_{1}, L_{2} be two arbitrary languages in \mathcal{P}. By definition of \mathcal{P}, there exist TMs M_{1}, M_{2}, both working in polynomial time, such that $L\left(M_{1}\right)=L_{1}$ and $L\left(M_{2}\right)=L_{2}$. We can now construct the desired TM M such that $L(M)=L_{1} L_{2}$. Let w be the input string to M. For each i with $0 \leq i \leq|w|, M$ performs the following steps:

- split w into substrings u, v such that $w=u v$ and $|u|=i$;
- simulate M_{1} on u and simulate M_{2} on v
- if both simulations accept, then halt and accept;
- if $i<|w|$ continue the for loop, otherwise halt and reject.

To show that $L_{1} L_{2} \subseteq L(M)$, consider strings $u \in L_{1}$ and $v \in L_{2}$. When given as input string $u v, M$ will halt and accept for $i=|u|$. To show that $L(M) \subseteq L_{1} L_{2}$, assume that on input w M halts and accepts at the i-th execution of the for loop. Let $w=u v$ with $|u|=i$. From the specification of M, we have $u \in L_{1}$ and $v \in L_{2}$, and therefore $w=u v \in L_{1} L_{2}$. We thus conclude that $L(M)=L_{1} L_{2}$. Finally, M runs the body of its for loop $|w|+1$ times, and the body of the for loop can be executed in polynomial time in $|w|$. We thus conclude that M runs in polynomial time.
5. [7 points] In relation to the notion of Turing machine (TM), answer the following questions.
(a) Let M be a TM defined over the input alphabet $\Sigma=\{0,1\}$, and let enc (M) be some binary encoding of M. Consider the languages

$$
\begin{aligned}
& L_{1}=\{\operatorname{enc}(M) \mid \text { there is some input such that } M \text { accepts in exactly } 5 \text { steps }\}, \\
& L_{2}=\{\operatorname{enc}(M) \mid \text { there is some input of length } 5 \text { that is accepted by } M\} .
\end{aligned}
$$

Assess whether L_{1} and L_{2} belong to the class REC.
(b) Let M_{1} and M_{2} be TMs defined over the input alphabet $\Sigma=\{0,1\}$, and let enc $\left(M_{1}, M_{2}\right)$ be some binary encoding of M_{1} and M_{2}. Consider the language

$$
L_{3}=\left\{\operatorname{enc}\left(M_{1}, M_{2}\right) \mid \overline{L\left(M_{1}\right)}=L\left(M_{2}\right)\right\}
$$

where \bar{L} is the complement of language L with respect to Σ^{*}. Assess whether L_{3} belongs to the classes RE or not.

Solution

(a) Language L_{1} belongs to REC. To see this, we observe that in 5 steps a TM M can only read the 5 leftmost symbols of its input tape. We can then simulate M on all of the finitely many possible configurations of the input tape having only the leftmost 5 cells filled in by some input alphabet symbol. We accept if any simulation leads to acceptance, and reject otherwise. It is immediate to see that the procedure specified above always halts.
Language L_{2} does not belong to REC. To see this, we define a property of the RE languages $\mathcal{P}=\{L \mid L \in \mathrm{RE}$, there exists some $w \in L$ such that $|w|=5\}$. We now define $L_{\mathcal{P}}=\{\operatorname{enc}(M) \mid$ $L(M) \in \mathcal{P}\}$, and observe that $L_{\mathcal{P}}=L_{2}$. We can then apply Rice's theorem and show that \mathcal{P} is not trivial. First, Σ^{*} is in RE and contains some string w such that $|w|=5$. Therefore we have $\Sigma^{*} \in \mathcal{P}$ and \mathcal{P} is not empty. Second, the empty language \emptyset is in RE and does not contain any string w such that $|w|=5$. Therefore we have $\emptyset \notin \mathcal{P}$, and thus \mathcal{P} does not contain every RE language. Since \mathcal{P} is not trivial, we can conclude that L_{2} is not in REC, according to Rice's theorem.
(b) L_{3} is not in RE. To show this, we consider the language L_{e}, that is, the language of the encodings of all TMs that accept the empty language, and show a reduction $L_{e} \leq_{m} L_{3}$. Since L_{e} is not in RE , the reduction proves the desired claim.
We need to map instances enc (M) of L_{e} into instances enc $\left(M_{1}, M_{2}\right)$ of L_{3}. Let $M_{\Sigma^{*}}$ be a TM such that $L\left(M_{\Sigma^{*}}\right)=\Sigma^{*}$. We set $M_{1}=M$ and $M_{2}=M_{\Sigma^{*}}$. The following chain of logical equivalences shows that the construction represents a valid reduction:

$$
\begin{array}{llll}
\operatorname{enc}(M) \in L_{e} & \text { iff } & \frac{L(M)}{}=\emptyset & \text { (definition of } L_{e} \text {) } \\
& \text { iff } & \frac{L(M)}{L(M)}=\Sigma^{*} & \text { (definition of complementation) } \\
& \text { iff } & \overline{L\left(M_{1}\right)}=L\left(M_{2}\right) & \text { (definition of our reduction) } \\
& \text { iff } & \text { enc }\left(M_{1}, M_{2}\right) \in L_{3} & \text { (definition of } \left.L_{3}\right) .
\end{array}
$$

