
Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation

February 21st, 2022

1. [5 points] In relation to the notion of regular expression, answer the following questions.

(a) Provide the recursive definition of regular expression E over an alphabet Σ and the generated
language L(E).

(b) Using structural induction, prove that a regular expression E over Σ without the Kleene opera-
tor ‘∗’ generates a finite language.

Solution

(a) The required definition can be found in Chapter 2 of the textbook, Section 3.1.2.

(b) Base case: E = ε, E = ∅, or E = a for a ∈ Σ. These regular expressions do not have any
occurrence of the Kleene operator and generate a finite language by definition.

Induction: Let E be a regular expression with no occurrence of the Kleene operator. According
to the definition of regular expression in (a), we distinguish the following cases.

i. If E = F + G, then F and G do not have any occurrence of the Kleene operator. We
can apply the inductive hypothesis, deriving that L(F) and L(G) are both finite. Since
L(E) = L(F) ∪ L(G), we have |L(E)| ≤ |L(F)|+ |L(G)| and thus L(E) is finite as well.

ii. If E = FG, then F and G do not have any occurrence of the Kleene operator. We can
apply the inductive hypothesis, deriving that L(F) and L(G) are both finite. Since L(E) =
L(F)L(G), we have |L(E)| ≤ |L(F)| · |L(G)| and thus L(E) is finite.

iii. The case E = F ∗ is not considered here, because E contains occurrence of the Kleene
operator.

iv. If E = (F), then F does not have any occurrence of the Kleene operator. We can apply the
inductive hypothesis, deriving that L(F) is finite. Since L(E) = L(F), L(E) must be finite.

2. [9 points] Consider the following languages, defined over the alphabet Σ = {0, 1}

L1 = {w | w = uu, u ∈ Σ+} ;

L2 = {w | w = uxu, u ∈ Σ+, x ∈ Σ∗} ;

L3 = {w | w = xuyuz, u ∈ Σ+, x, y, z ∈ Σ∗} .

State whether the above languages are regular languages, and provide a mathematical proof of your
answers.

Solution

(a) L1 is not a regular language. To prove this statement, we use the pumping lemma for regular
languages. Let N be the pumping lemma constant. We choose the string w = 0N10N1 ∈ L1 with
|w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1 and
|xy| ≤ N . Because of the latter condition, we have that y can only contain occurrences of symbol
0 from the left run 0N in w.

According to the pumping lemma, the string wk = xykz should be in L1 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 0. We then have w0 = 0N−m10N1. Assuming that m is even, we
can factorize w0 into two strings of equal length w0 = uu′. It is easy to see that u ends with an
occurrence of 0, since m ≥ 1, while u′ ends with an occurrence of 1. Then u 6= u′ and w0 6∈ L1,
which is a contraddiction. We thus conclude that L1 is not a regular language.

(b) L2 is not a regular language. Let N be the pumping lemma constant. We choose the string
w = 0N10N1 ∈ L2. Again, we have that y can only contain occurrences of symbol 0 from the left
run 0N in w.

According to the pumping lemma, the string wk = xykz should be in L2 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 2. We then have w2 = 0N+m10N1. For w2 to be in L2, we must find
a factorization w2 = uxu′ such that u = u′, where u ∈ Σ+ and x ∈ Σ∗. We observe that u′ must
end with an occurrence of 1. Thus we can only choose u = 0N+m1. However, since m ≥ 1, there
is no choice for a string u′ to the right of u satisfying the desired equivalence u = u′, because we
only have N occurrences of symbol 0 to the right of u. We thus conclude that L2 is not a regular
language.

(c) L3 is a regular language. Intuitively, we cannot apply to L3 the same reasoning in (a) and (b)
above, because in a string in L3 we do not know where the boundaries for the two occurrences of
u are placed.

Consider the language L′3 = {w | w = xayaz, a ∈ Σ, x, y, z ∈ Σ∗}. L′3 is a regular language and
it can be generated by the following regular expression

(0 + 1)∗0(0 + 1)∗0(0 + 1)∗ + (0 + 1)∗1(0 + 1)∗1(0 + 1)∗ .

We show that L3 = L′3.

i. L′3 ⊆ L3. Any string w ∈ L′3 can be factorized as w = xayaz with a ∈ Σ and x, y, z ∈ Σ∗.
By letting a = u ∈ Σ+, we immediately have w ∈ L3.

ii. L3 ⊆ L′3. Any string w ∈ L3 can be factorized as w = xuyuz, with u ∈ Σ+ and x, y, z ∈ Σ∗.
We can write u = au′ with a ∈ Σ and u′ ∈ Σ∗. This provides w = xau′yau′z, which implies
w ∈ L′3.

3. [6 points] With reference to the class of context-free languages, answer the following questions.

(a) Define the notion of substitution over some alphabet Σ, and extend the definition to strings and
languages.

(b) Prove that if L is a CFL defined over Σ and s is a substitution on Σ such that, for each a ∈ Σ,
s(a) is a CFL, then s(L) is a CFL.

Solution

The required definition and proof can be found in Chapter 7 of the textbook, Section 7.3.1.

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) For strings w1, w2 ∈ Σ∗, we say that w2 is a proper prefix of w1 if w1 = w2u for some u ∈ Σ+.
There exists an infinite regular language L such that, for any two strings w1, w2 ∈ L, w1 is not a
proper prefix of w2.

(b) There exist languages L1, L3 in CFLrREG and L2 in REG, all defined over the same alphabet
Σ, such that L1 ⊆ L2 ⊆ L3.

(c) The class P of languages that can be recognized in polynomial time by a TM is closed under
concatenation.

Solution

(a) True. Let Σ = {a, b} and consider the infinite regular language L = {w | w = anb, n ≥ 0},
which can be generated by the regular expression a∗b. Let w1 = apb ∈ L. String w1 is a proper
prefix of some string w2 if and only if w2 = apbaq with q ≥ 1. But then w2 cannot be in L.

(b) True. Let Σ = {a, b} and consider the languages

L1 = {w | w = anbn, n ≥ 0} ,
L2 = {w | w = anbm, n,m ≥ 0} ,
L3 = {w | w = bnan, n ≥ 0} ∪ L2 .

It is easy to show that L2 is in REG and L1, L3 are CFL. Furthermore, using the pumping lemma,
we can show that L1, L3 are not in REG. The containments L1 ⊆ L2 and L2 ⊆ L3 directly follow
from the language definitions.

(c) True. Let L1, L2 be two arbitrary languages in P. By definition of P, there exist TMs M1,M2,
both working in polynomial time, such that L(M1) = L1 and L(M2) = L2. We can now construct
the desired TM M such that L(M) = L1L2. Let w be the input string to M . For each i with
0 ≤ i ≤ |w|, M performs the following steps:

• split w into substrings u, v such that w = uv and |u| = i;

• simulate M1 on u and simulate M2 on v

• if both simulations accept, then halt and accept;

• if i < |w| continue the for loop, otherwise halt and reject.

To show that L1L2 ⊆ L(M), consider strings u ∈ L1 and v ∈ L2. When given as input string
uv, M will halt and accept for i = |u|. To show that L(M) ⊆ L1L2, assume that on input w
M halts and accepts at the i-th execution of the for loop. Let w = uv with |u| = i. From the
specification of M , we have u ∈ L1 and v ∈ L2, and therefore w = uv ∈ L1L2. We thus conclude
that L(M) = L1L2. Finally, M runs the body of its for loop |w|+ 1 times, and the body of the
for loop can be executed in polynomial time in |w|. We thus conclude that M runs in polynomial
time.

5. [7 points] In relation to the notion of Turing machine (TM), answer the following questions.

(a) Let M be a TM defined over the input alphabet Σ = {0, 1}, and let enc(M) be some binary
encoding of M . Consider the languages

L1 = {enc(M) | there is some input such that M accepts in exactly 5 steps} ,
L2 = {enc(M) | there is some input of length 5 that is accepted by M} .

Assess whether L1 and L2 belong to the class REC.

(b) Let M1 and M2 be TMs defined over the input alphabet Σ = {0, 1}, and let enc(M1,M2) be some
binary encoding of M1 and M2. Consider the language

L3 = {enc(M1,M2) | L(M1) = L(M2)} ,

where L is the complement of language L with respect to Σ∗. Assess whether L3 belongs to the
classes RE or not.

Solution

(a) Language L1 belongs to REC. To see this, we observe that in 5 steps a TM M can only read the
5 leftmost symbols of its input tape. We can then simulate M on all of the finitely many possible
configurations of the input tape having only the leftmost 5 cells filled in by some input alphabet
symbol. We accept if any simulation leads to acceptance, and reject otherwise. It is immediate
to see that the procedure specified above always halts.

Language L2 does not belong to REC. To see this, we define a property of the RE languages
P = {L | L ∈ RE, there exists some w ∈ L such that |w| = 5}. We now define LP = {enc(M) |
L(M) ∈ P}, and observe that LP = L2. We can then apply Rice’s theorem and show that P
is not trivial. First, Σ∗ is in RE and contains some string w such that |w| = 5. Therefore we
have Σ∗ ∈ P and P is not empty. Second, the empty language ∅ is in RE and does not contain
any string w such that |w| = 5. Therefore we have ∅ 6∈ P, and thus P does not contain every
RE language. Since P is not trivial, we can conclude that L2 is not in REC, according to Rice’s
theorem.

(b) L3 is not in RE. To show this, we consider the language Le, that is, the language of the encodings
of all TMs that accept the empty language, and show a reduction Le ≤m L3. Since Le is not in
RE, the reduction proves the desired claim.

We need to map instances enc(M) of Le into instances enc(M1,M2) of L3. Let MΣ∗ be a TM such
that L(MΣ∗) = Σ∗. We set M1 = M and M2 = MΣ∗ . The following chain of logical equivalences
shows that the construction represents a valid reduction:

enc(M) ∈ Le iff L(M) = ∅ (definition of Le)

iff L(M) = Σ∗ (definition of complementation)

iff L(M1) = L(M2) (definition of our reduction)
iff enc(M1,M2) ∈ L3 (definition of L3) .

