Master Degree in Computer Engineering

Final Exam for

Automata, Languages and Computation
July 3rd, 2023

1. [4 points] Consider the regular expression $R=(\mathbf{1}+\epsilon)(\mathbf{0 0} \mathbf{*})^{*}$. Convert R into an equivalent ϵ-NFA using the construction provided in the textbook, and report the intermediate steps.
2. [7 points] Consider the following languages, defined over the alphabet $\{a, b\}$:

$$
\begin{aligned}
& L_{1}=\left\{\left.b a^{\frac{n}{2}} b a^{n} b \right\rvert\, n \geq 0, n \text { even }\right\} \\
& L_{2}=\left\{\left.b a^{\frac{n}{2}} a^{n} b \right\rvert\, n \geq 0, n \text { even }\right\} \\
& L_{3}=L_{2} L_{2} .
\end{aligned}
$$

For each of the above languages, state whether it belongs to REG or else CFL \backslash REG, and provide a mathematical proof for all of your answers.
3. [6 points] Consider the CFG G implicitly defined by the following productions:

$$
\begin{aligned}
& S \rightarrow B A B \mid B B B \\
& A \rightarrow a B \\
& B \rightarrow b A \mid \varepsilon
\end{aligned}
$$

Perform on G the following transformations that have been specified in the textbook, in the given order.
(a) Eliminate the ε-productions.
(b) Eliminate the unary productions.
(c) Eliminate the useless symbols.
(d) Produce a CFG G^{\prime} in Chomsky normal form such that $L\left(G^{\prime}\right)=L(G) \backslash\{\epsilon\}$.

Discuss each intermediate step, reporting the obtained CFGs.
4. [8 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
(a) Let L be a language in CFL and let L^{\prime} be a finite language. Then the language $L \backslash L^{\prime}$ is always in CFL.
(b) Let L be a language in CFL and let L^{\prime} be an infinite language. Then the language $L \backslash L^{\prime}$ is always in CFL.
(c) Let L be a language in REC \backslash CFL. For every natural number n, there exists a string $w \in L$ such that $|w| \geq n$.
(d) If an NP-complete problem is in \mathcal{P}, then $\mathcal{P}=\mathcal{N} \mathcal{P}$.
5. [5 points] Define the language $L_{n e}$ which we have studied in class. Prove that $L_{n e}$ does not belong to the class REC, using the proof presented in the textbook.
6. [3 points] Consider the following property of the RE languages defined over the alphabet $\Sigma=\{0,1\}$:

$$
\mathcal{P}=\{L \mid L \in \mathrm{CFL}\}
$$

and define $L_{\mathcal{P}}=\{\operatorname{enc}(M) \mid L(M) \in \mathcal{P}\}$. Use Rice's theorem to show that $L_{\mathcal{P}}$ is not in REC.

