Automata, Languages and Computation

Chapter 4 : Properties of Regular Languages

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Properties of regular languages

- Pumping Lemma : every regular language satisfies this property; useful to show that some languages are not regular
- 2 Closure properties : how to combine automata using specific operations
- Oecision problems : algorithms for the solution of problems based on automata/regex and their complexity
- 4 Automata minimization : reduce number of states to a minimum

Introduction to pumping lemma

Suppose $L_{01} = \{0^n 1^n \mid n \ge 1\}$ were a regular language

Then L_{01} must be recognized by some DFA A; let k be the number of states of A

Assume A reads 0^k . Then A must go through the following transitions :

 $\begin{array}{ll} \epsilon & p_0 \\ 0 & p_1 \\ 00 & p_2 \\ \cdots & \cdots \\ 0^k & p_k \end{array}$

By the **pigeonhole principle**, there must exist a pair *i*, *j* with $i < j \leq k$ such that $p_i = p_j$. Let us call *q* this state

Introduction to pumping lemma

Now you can fool A :

- if $\hat{\delta}(\textbf{\textit{q}},1^i)\notin \textbf{\textit{F}},$ then the machine will foolishly reject 0^i1^i
- if $\hat{\delta}(q,1^i) \in {\it F}$, then the machine will foolishly accept $0^j 1^i$

In other words: state q would represent inconsistent information about the count of occurrences of 0 in the string read so far

Therefore A does not exists, and L_{01} is not a regular language

Pumping lemma for regular languages

Theorem Let *L* be any regular language. Then $\exists n \in \mathbb{N}$ depending on *L*, $\forall w \in L$ with $|w| \ge n$, we can factorize w = xyz with :

- $y \neq \epsilon$
- $|xy| \leq n$
- $\forall k \ge 0, xy^k z \in L$

Pumping lemma for regular languages

Proof

Suppose *L* is a regular language

Then L is recognized by some DFA A with, say, n states

Let $w = a_1 a_2 \cdots a_m \in L$ with $m \ge n$

Let
$$p_i = \hat{\delta}(q_0, a_1 a_2 \cdots a_i)$$
, for each $i = 0, 1, \dots, n$

There exists $i < j \leq n$ such that $p_i = p_j$

Pumping lemma for regular languages

Let us write w = xyz, where • $x = a_1 a_2 \cdots a_i$ • $y = a_{i+1}a_{i+2}\cdots a_i$ • $z = a_{i+1}a_{i+2}...a_m$ y = $a_{i+1} \ldots a_i$ $a_{j+1} \cdots a_m$ Start $a_1 \dots a_i$

Evidently, $xy^k z \in L$, for any $k \ge 0$

Example

Let Σ be some alphabet, and let $w \in \Sigma^*$, $a \in \Sigma$. We write $\#_a(w)$ to denote the **number of occurrences** of *a* in *w*

We define

$$L_{eq} = \{ w \mid w \in \{0,1\}^*, \ \#_0(w) = \#_1(w) \}$$

In words, L_{eq} is the language whose strings have an equal number of 0's and 1's

Use the pumping lemma to show that L is not regular

Example

Proof Suppose L_{eq} were regular. Then $L(A) = L_{eq}$ for some DFA A

Let *n* be the number of states of *A* and let $w = 0^n 1^n \in L(A)$

By the pumping lemma we can factorize w = xyz with

•
$$|xy| \leq n$$
,

•
$$y \neq \epsilon$$

and state that, for each $k \ge 0$, we have $xy^k z \in L(A)$

$$w = \underbrace{000\cdots}_{x} \underbrace{\cdots}_{y} \underbrace{\cdots}_{z} \underbrace{0111\cdots11}_{z}$$

Example

For k = 0 we have $xz \in L(A)$

This is a **contradiction**, since $|y| \ge 1$ and then xz has fewer 0's than 1's

We therefore conclude that $L(A) \neq L_{eq}$

Comment of the if-then formulation of the pumping lemma: many students wrongly state that if the pumping lemma holds, then the language must be regular

Example

Proof (alternative) We can see the application of the pumping lemma as a game between two players

Player P2 states that L_{eq} is regular, and player P1 wants to establish a **contradiction**

- P2 picks *n* (number of states of DFA, if it exists)
- P1 picks string $w = 0^n 1^n \in L_{eq}$, with $|w| \ge n$
- P2 picks a factorization w = xyz, with $|xy| \le n$, $y \ne \epsilon$ and $xy^kz \in L_{eq}$ (assuming L_{eq} is regular)
- P1 picks k such that xy^kz ∉ L, which is a violation of the pumping lemma. Specifically, P1 picks k = 0: xz ∉ L_{eq}, since y contains just 0's, y ≠ e, and thus #₀(xz) < #₁(xz) = n
- P1 concludes that L_{eq} cannot be regular

Example

Let $L_{pr} = \{1^p \mid p \text{ prime}\}$. Using the pumping lemma, show that L_{pr} is not regular

Proof Let *n* be as in the pumping lemma, and let $p \ge n+2$ be some prime number. Thus $1^p \in L_{pr}$

By the pumping lemma we can write w = xyz with

- $|xy| \leq n$,
- $y \neq \epsilon$

such that, for each $k \ge 0$, we have $xy^k z \in L(A)$

Example

Let $|y| = m \ge 1$

Choose k = p - m, so that $xy^{p-m}z \in L_{pr}$ and then $|xy^{p-m}z|$ is a prime number

Example

We can write
$$|xy^{p-m}z| = |xz| + (p-m)|y| = p - m + (p-m)m = (1+m)(p-m)$$

Let us verify that none of the two factors is a 1 :

We have derived a contradiction

Exercise

For a string w, we write w^R to denote the reverse of w. Example: $01011^R = 11010$ and $(w^R)^R = w$

Consider the language

$$L = \{ww^R \mid w \in \{0, 1\}^*\}$$

Using the pumping lemma, show that L is not regular

Closure properties of regular languages

Let L and M be regular languages over Σ . Then the following languages are all regular

- Union: $L \cup M$
- Intersection: $L \cap M$
- Complement: $\overline{L} = \Sigma^* \smallsetminus L$
- Difference: $L \smallsetminus M$
- Reversal: $L^R = \{w^R \mid w \in L\}$
- Kleene closure: L*
- Concatenation: L.M
- Homomorphism: $h(L) = \{h(w) \mid w \in L\}$
- Inverse homomorphism: $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

Closure under union

Theorem For any regular languages $L \in M$, $L \cup M$ is regular

Proof Let *E* and *F* be regular expressions such that L = L(E) and M = L(F). Then $L \cup M$ is generated by E + F, and is regular by definition

Closure under concatenation and Kleene

The proof of closure under union is rather **immediate**, since regular expressions use the union operator

Similarly, we can immediately prove the closure under

- concatenation
- Kleene operator

Closure under complement

Theorem If *L* is a regular language over Σ , then so is $\overline{L} = \Sigma^* \setminus L$ **Proof** Let *L* be recognized by a DFA

$$A = (Q, \Sigma, \delta, q_0, F).$$

Let $B = (Q, \Sigma, \delta, q_0, Q \smallsetminus F)$. Now $L(B) = \overline{L}$

Example

Let L be recognized by the DFA

Then \overline{L} is recognized by the DFA

Closure under intersection

Theorem If L and M are regular, then so is $L \cap M$

Proof By De Morgan's law, $L \cap M = \overline{\overline{L} \cup \overline{M}}$

We already know that regular languages are closed under complement and union

Intersection automaton

Proof (alternative) Let $L = L(A_L)$ and $M = L(A_M)$ for automata A_L and A_M with

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$
$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Without any loss of generality, we assume that both automata are deterministic

We shall construct an automaton that simulates A_L and A_M in parallel, and accepts if and only if both A_L and A_M accept

Intersection automaton

Idea : If A_L goes from state p to state s upon reading a, and A_M goes from state q to state t upon reading a, then $A_{L \cap M}$ will go from state (p, q) to state (s, t) upon reading a

Intersection automaton

Formally

$$A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_{L,0}, q_{M,0}), F_L \times F_M),$$

where

$$\delta_{L \cap M}((p,q),a) = (\delta_L(p,a),\delta_M(q,a))$$

We can show by induction on |w| that

$$\hat{\delta}_{L\cap M}((q_{L,0}, q_{M,0}), w) = \left(\hat{\delta}_{L}(q_{L,0}, w), \hat{\delta}_{M}(q_{M,0}, w)\right)$$

Then $A_{L \cap M}$ accepts if and only if A_L and A_M accept

Exercise

Build an automaton that accepts strings with at least one 0 and at least one 1. Let's build **simpler** automata and take the intersection

Closure under set difference

Theorem If L and M are regular languages, so is $L \setminus M$

Proof Observe that $L \smallsetminus M = L \cap \overline{M}$

We already know that regular languages are closed under complement and intersection

Closure under reverse operator

Theorem If *L* is regular, so is L^R

Proof Let *L* be recognized by FA *A*. Turn *A* into an FA for L^R by

- reversing all arcs
- make the old start state the new sole accepting state
- create a new start state p₀ such that δ(p₀, ε) = F, F the set of accepting states of old A

Closure under reverse operator

Proof (alternative) Let *E* be a regular expression. We shall construct a regular expression E^R such that $L(E^R) = (L(E))^R$

We proceed by structural induction on E

Base If *E* is ϵ , \emptyset , or *a*, then $E^R = E$ (easy to verify)

Closure under reverse operator

Induction

- E = F + G: We need to reverse the two languages. Then $E^R = F^R + G^R$
- E = F.G: We need to reverse the two languages and also reverse the order of their concatenation. Then $E^R = G^R.F^R$

•
$$E = F^*$$
:
 $w \in L(F^*)$ means $\exists k : w = w_1w_2\cdots w_k$, $w_i \in L(F)$
then $w^R = w_k^R w_{k-1}^R \cdots w_1^R$, $w_i^R \in L(F^R)$
then $w^R \in L(F^R)^*$
Same reasoning for the inverse direction. Then $E^R = (F^R)^*$

Thus
$$L(E^R) = (L(E))^R$$

Test

State whether the following claims hold true, and motivate your answer

- the intersection of a non-regular language and a finite language is always a regular language
- the intersection of a non-regular language L_1 and an infinite regular language L_2 is never a regular language
- every subset of a non-regular language is a non-regular language

Superset and subset

Assume L is a regular language. We **cannot say anything** about languages L' and L'' with $L' \subset L$ and $L'' \supset L$

More precisely

- L' could be regular or non-regular
- L" could be regular or non-regular

Often student gets confused about this, thinking that adding strings to L makes it 'more difficult' and removing strings from L makes it 'less difficult'. But this is **not true in general**

Homomorphisms

Let Σ and Δ be two alphabets. A **homomorphisms** over Σ is a function $h: \Sigma \to \Delta^*$

Informally, a homomorphism is a function which replaces each symbol with a string

Example : Let $\Sigma = \{0, 1\}$ and define h(0) = ab, $h(1) = \epsilon$; h is a homomorphism over Σ

Homomorphisms

We extend *h* to Σ^* : if $w = a_1 a_2 \cdots a_n$ then

$$h(w) = h(a_1)h(a_2)\cdots h(a_n)$$

Equivalently, we can use a recursive definition :

$$h(w) = \begin{cases} \epsilon, & \text{if } w = \epsilon; \\ h(x)h(a) & \text{if } w = xa, \ x \in \Sigma^*, \ a \in \Sigma. \end{cases}$$

Example : Using *h* from previous example on string 01001 results in *ababab*

Homomorphisms

For a language $L \subseteq \Sigma^*$

$$h(L) = \{h(w) \mid w \in L\}$$

Example: Let *L* be the language associated with the regular expression 10^*1 . Then h(L) is the language associated with the regular expression $(ab)^*$

Closure under homomorphism

Theorem Let $L \subseteq \Sigma^*$ be a regular language and let h be a homomorphisms over Σ . Then h(L) is a regular language

Proof Let *E* be a regular expression generating *L*. We define h(E) as the regular expression obtained by substituting in *E* each symbol *a* with $a_1a_2\cdots a_k$, under the assumption that

We now prove the statement

$$L(h(E)) = h(L(E)),$$

using structural induction on E

Closure under homomorphism

Base
$$E = \epsilon$$
 or else $E = \emptyset$. Then $h(E) = E$, and $L(h(E)) = L(E) = h(L(E))$

E = a with $a \in \Sigma$. Let $h(a) = a_1 a_2 \cdots a_k$, $k \ge 0$. Then $L(a) = \{a\}$ and thus $h(L(a)) = \{a_1 a_2 \cdots a_k\}$

The regular expression $h(\mathbf{a})$ is $\mathbf{a_1}\mathbf{a_2}\cdots\mathbf{a_k}$. Then $L(h(\mathbf{a})) = \{\mathbf{a_1}\mathbf{a_2}\cdots\mathbf{a_k}\} = h(L(\mathbf{a}))$

Closure under homomorphism

Induction Let E = F + G. We can write

$$L(h(E)) = L(h(F + G))$$

$$= L(h(F) + h(G)) \qquad h$$

$$= L(h(F)) \cup L(h(G)) \qquad +$$

$$= h(L(F)) \cup h(L(G)) \qquad \text{in}$$

$$= h(L(F) \cup L(G)) \qquad h$$

$$= h(L(F + G)) \qquad +$$

$$= h(L(E))$$

h defined over regex
+ definition
inductive hypothesis for F, G
h defined over languages
+ definition

Closure under homomorphism

Let E = F.G. We can write

$$L(h(E)) = L(h(F.G)) = L(h(F).h(G)) = L(h(F)).L(h(G)) = h(L(F)).h(L(G)) = h(L(F).L(G)) = h(L(F.G))$$

= h(L(E))

h defined over regex
definition
inductive hypothesis for F, G
h defined over languages
definition

Closure under homomorphism

Let $E = F^*$. We can write

L

$$\begin{array}{rcl} L(h(E)) &=& L(h(F^*)) \\ &=& L([h(F)]^*) \\ &=& \bigcup_{k \ge 0} [L(h(F))]^k \\ &=& \bigcup_{k \ge 0} [h(L(F))]^k \\ &=& \bigcup_{k \ge 0} h([L(F)]^k) \\ &=& h(\bigcup_{k \ge 0} [L(F)]^k) \\ &=& h(L(F^*)) \\ &=& h(L(E)) \end{array}$$

h defined over regex
* definition
inductive hypothesis for F
h definition over languages
h definition over languages
* definition

Conversion complexity

We can convert among DFA, NFA, ϵ -NFA, and regular expressions

What is the computational complexity of these conversions?

We investigate the computational complexity as a function of

- number of states *n* for an FA
- number of operators *n* for a regular expressions
- we assume $|\Sigma|$ is a constant

From ϵ -NFA to DFA

Suppose an ϵ -NFA has *n* states. To compute ECLOSE(*p*) we visit at most n^2 arcs. We do this for *n* states, resulting in time $O(n^3)$

The resulting DFA has 2^n states. For each state S and each $a \in \Sigma$ we compute $\delta(S, a)$ in time $\mathcal{O}(n^3)$. In total, the computation takes $\mathcal{O}(n^3 \cdot 2^n)$ steps, that is, **exponential time**

If we compute δ just for the <code>reachable</code> states

- we need to compute $\delta(S, a)$ s times only, with s the number of reachable states
- in total the computation takes $\mathcal{O}(n^3 \cdot s)$ steps

Other conversions

From NFA to DFA : computation takes **exponential time** From DFA to NFA :

- put set brackets around the states
- computation takes time $\mathcal{O}(n)$, that is, linear time

From FA to regular expression via state elimination construction: computation takes **exponential time**

Other conversions

From regular expression to ϵ -NFA :

- construct a tree representing the structure of the regular expression in time $\mathcal{O}(n)$
- at each node in the tree, we build new nodes and arcs in time $\mathcal{O}(1)$ and use **pointers** to previously built structure, avoiding copying
- grand total time is $\mathcal{O}(n)$, that is, **linear time**

Decision problems

In the problem instances below, languages L and M are expressed in any of the four representations introduced for regular languages

- $L = \emptyset$?
- $w \in L$?
- L = M ?

Empty language

 $L(A) \neq \emptyset$ for FA A if and only if at least one final state is **reachable** from the initial state of A

Algorithm for computing reachable states :

Base The initial state is reachable

Induction If q is reachable and there exists a transition from q to p, then p is reachable

Computation takes time proportional to the number of arcs in A, thus $\mathcal{O}(n^2)$

We already saw this idea in the lazy evaluation for translating NFA into DFA

Empty language

Given a regular expression *E*, we can decide $L(E) \stackrel{?}{=} \emptyset$ by structural induction

Base

•
$$E = \epsilon$$
 or else $E = a$. Then $L(E)$ is non-empty

•
$$E = \emptyset$$
. Then $L(E)$ is empty

Induction

- E = F + G. Then L(E) is empty if and only if both L(F) and L(G) are empty
- E = F.G. Then L(E) is empty if and only if either L(F) or L(G) are empty
- $E = F^*$. Then L(E) is not empty, since $\epsilon \in L(E)$

Language membership

We can test $w \in L(A)$ for DFA A by simulating A on w. If |w| = n this takes O(n) steps

If A is an NFA with s states, simulating A on w requires $\mathcal{O}(n \cdot s^2)$ steps

Language membership

If A is an $\epsilon\text{-NFA}$ with s states, simulating A on w requires $\mathcal{O}(n\cdot s^3)$ steps

Alternatively, we can pre-process A by calculating ECLOSE(p) for s states, in time $\mathcal{O}(s^3)$. Afterwards, the simulation of each symbol a from w is carried out as follows

 \bullet from the current states, find the successor states under a in time $\mathcal{O}(s^2)$

• compute the $\epsilon\text{-closure}$ for the successor states in time $\mathcal{O}(s^2)$ This takes time $\mathcal{O}(n\cdot s^2)$

Language membership

If L = L(E), for some regular expression E of length s, we first convert E into an ϵ -NFA with 2s states. Then we simulate w on this automaton, in $\mathcal{O}(n \cdot s^3)$ steps

Language membership

We can convert an NFA or an ϵ -NFA into a DFA, and then simulate the input string in time $\mathcal{O}(n)$

The time required by the conversion could be **exponential** in the size of the input FA

This method is used

- when the FA has small size
- when one needs to process several strings for membership with the same FA

Equivalent states

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and let $p, q \in Q$. We define $p \equiv q \iff \forall w \in \Sigma^* : \hat{\delta}(p, w) \in F$ if and only if $\hat{\delta}(q, w) \in F$

In words, we require p, q to have equal response to input strings, with respect to acceptance

If $p \equiv q$ we say that p and q are **equivalent** states If $p \not\equiv q$ we say that p and q are **distinguishable** states Equivalently : p and q are distinguishable if and only if

 $\exists w : \hat{\delta}(p, w) \in F$ and $\hat{\delta}(q, w) \notin F$, or the other way around

Example

$$\begin{split} \hat{\delta}(C,\epsilon) \in \mathcal{F}, \ \hat{\delta}(G,\epsilon) \notin \mathcal{F} \ \Rightarrow \ C \not\equiv G & (\mathcal{F} \text{ finale states}) \\ \hat{\delta}(A,01) = C \in \mathcal{F}, \ \hat{\delta}(G,01) = E \notin \mathcal{F} \ \Rightarrow \ A \not\equiv G \end{split}$$

Example

We prove $A \equiv E$ $\hat{\delta}(A, 1) = F = \hat{\delta}(E, 1)$. Thus $\hat{\delta}(A, 1x) = \hat{\delta}(E, 1x) = \hat{\delta}(F, x)$, $\forall x \in \{0, 1\}^*$ $\hat{\delta}(A, 00) = G = \hat{\delta}(E, 00)$. Thus $\hat{\delta}(A, 00x) = \hat{\delta}(E, 00x) = \hat{\delta}(G, x)$, $\forall x \in \{0, 1\}^*$ $\hat{\delta}(A, 01) = C = \hat{\delta}(E, 01)$. Thus $\hat{\delta}(A, 01x) = \hat{\delta}(E, 01x) = \hat{\delta}(C, x)$, $\forall x \in \{0, 1\}^*$

State equivalence algorithm

We can compute distinguishable state pairs using the following recursive relation

Base If $p \in F$ and $q \notin F$, then $p \neq q$

Induction If $\exists a \in \Sigma$: $\delta(p, a) \neq \delta(q, a)$, then $p \neq q$

We compute distinguishable states by backward propagation

State equivalence algorithm

Apply the recursive relation using an **adjacency table** and the following dynamic programming algorithm

- \bullet initialize table with pairs that are distinguishable by string ϵ
- for all not yet visited pairs, try to distinguish them using one symbol string: if you reach a pair of **already** distinguishable states, then update table
- iterate until no new pair can be distinguished

Example

Chapter 4

Correctness

Theorem If p and q are not distinguished by the algorithm, then $p \equiv q$

Proof

Suppose to the contrary that there is a bad pair $\{p,q\}$ such that

- $\exists w : \hat{\delta}(p, w) \in F, \ \hat{\delta}(q, w) \notin F$, or the other way around
- the algorithm does not distinguish between p and q

Each bad pair can be distinguished by some string w

We choose the bad pair p, q with the shortest distinguishing string w. Let $w = a_1 a_2 \cdots a_n$

Correctness

Now $w \neq \epsilon$, since otherwise the algorithm would distinguish p from q at the basis step. Thus $n \ge 1$

Let us consider states $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$

r,s cannot be a bad pair, otherwise r,s would be identified by a string shorter than w

therefore the algorithm must have correctly discovered that r and s are distinguishable. But then the algorithm would distinguish p from q in the inductive part

We conclude that there are no bad pairs, and the theorem holds true

Regular language equivalence

Let L and M be regular languages (specified by means of some representation)

To test $L \stackrel{?}{=} M$:

- convert L and M representations into DFAs
- construct the union DFA (never mind if there are two start states)
- apply state equivalence algorithm
- if the two start states are distinguishable, then $L \neq M$, otherwise L = M

Example

Example

The state equivalence algorithm produces the table

We have $A \equiv C$, thus the two DFAs are equivalent

Both DFAs recognize language $L(\epsilon + (\mathbf{0} + \mathbf{1})^*\mathbf{0})$

DFA minimization

Important application of the equivalence algorithm : given DFA as input, produces equivalent DFA with **minimum number of states**

Minimal DFA is unique, up to renaming of the states

Idea :

- eliminate states that are unreachable from the initial state
- merge equivalent states into an individual state

Example

State partition based on the equivalence relation : $\{\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}\}\$

Example

State partition based on the equivalence relation : $\{\{A, C, D\}, \{B, E\}\}\$

Transitivity

Theorem If $p \equiv q$ and $q \equiv r$, then $p \equiv r$

Proof

Suppose to the contrary that $p \neq r$

- Then $\exists w$ such that $\hat{\delta}(p,w) \in F$ and $\hat{\delta}(r,w) \notin F$ or the other way around
- Case 1 : $\hat{\delta}(q, w)$ is accepting. Then $q \not\equiv r$
- Case 2 : $\hat{\delta}(q, w)$ is not accepting. Then $p \neq q$

Therefore it must be that $p \equiv r$

Relation \equiv is reflexive, symmetric and transitive : thus \equiv is an **equivalence relation**

We can talk about equivalence classes

DFA minimization

To minimize DFA $A = (Q, \Sigma, \delta, q_0, F)$, construct DFA $B = (Q/_{\equiv}, \Sigma, \gamma, q_0/_{\equiv}, F/_{\equiv})$, where

- ${\, \bullet \, }$ elements of $Q/_{\scriptscriptstyle \equiv}$ are the equivalence classes of \equiv
- elements of $F/_{=}$ are the equivalence classes of \equiv composed by states from F
- $q_0/_{\pm}$ is the set of states that are equivalent to q_0

•
$$\gamma(\mathbf{p}/_{\equiv}, \mathbf{a}) = \delta(\mathbf{p}, \mathbf{a})/_{\equiv}$$

DFA minimization

In order for B to be well defined we have to show that

If
$$p \equiv q$$
 then $\delta(p, a) \equiv \delta(q, a)$

If $\delta(p, a) \neq \delta(q, a)$, then the equivalence algorithm would conclude that $p \neq q$. Thus *B* is well defined

Example

Minimize

Example

We obtain

Automata, Languages and Computation

Chapter 4

Automata minimization

We cannot apply the algorithm to NFAs

Example : To minimize

we simply remove state *C*. However, $A \neq C$