
Application and Research Highlights

Regular Expressions

Lecturer : Giorgio Satta

Based on material originally presented in :
https://www.youtube.com/watch?v=Ha9l9fWwO9s

Lecturer : Giorgio Satta Application and Research Highlights

Applications

Pattern matching : text and web search

Lexical analysis : mainly in compilers

Information extraction : extract date & location in emails, data
base population

Computational biology : DNA harvester and pattern recognition

Security : search for malicious patterns in stream

Lecturer : Giorgio Satta Application and Research Highlights

grep command

Used in Unix and Emacs

Extends regular expressions with several operators; in most cases,
same generative capacity

Several books about grep command !

Example : Operator . is the don’t care, use grep for crossword
puzzles !

Lecturer : Giorgio Satta Application and Research Highlights

grep command

public class Grep

{

public static void main (String [] args)

{

// use NFA: Java class which provides a data type

// for creating a nondeterministic finite state automaton

String regex = "(.*" + args[0] + ".*)"; // embedded regex

NFA nfa = new NFA(regex);

while (StdIn.hasNextLine())

{

String line = StdIn.readLine();

if (nfa.recognizes(line))

StdOut.println(line);

}

}

}

Lecturer : Giorgio Satta Application and Research Highlights

Regexp libraries & tools

Many programming languages support extended regular
expressions: Awk, Perl, PHP, Python, JavaScript

Many tools for compiling regular expressions

Example : Lex and Flex for automatic construction of lexical
analyzers

Lecturer : Giorgio Satta Application and Research Highlights

Regexp libraries

import java.util.regex.Pattern;

import java.util.regex.Matcher;

public class Harvester

{

public static void main(String[] args) {

String regexp = args[0];

In in = new In(args[1]); // file or web page

String input = in.readAll();

Pattern pattern = Pattern.compile(regexp); // build nfa

Matcher matcher = pattern.matcher(input); // nfa simulator

while (matcher.find()) { // apply simulator

String s = matcher.group(); // return matching substring

StdOut.println(s);

}

}

}

Lecturer : Giorgio Satta Application and Research Highlights

Matching

Reluctant matching closes the match as early as possible

Example : <blink> .* </blink>

Greedy matching extends the match as wide as possible

Example : then vs. thenextvalue

Lecturer : Giorgio Satta Application and Research Highlights

Matching

Back-reference : extension to regex used by several tools

Example : (.+)\1 implements copying, matching strings of the
form ww which is not a regular language

the expression between parentheses is called capturing group

With use of back-reference matching becomes intractable

Lecturer : Giorgio Satta Application and Research Highlights

Efficiency

Efficiency may be an issue

Regular expression (a|aa)*b might take exponential time in naive
implementations, when tested on strings of the form anc !

Several DoS attack by sending killing email addresses to anti-spam

Lecturer : Giorgio Satta Application and Research Highlights

