Automata, Languages and Computation

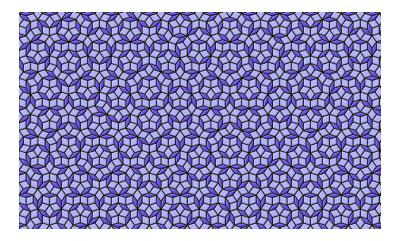
Chapter 7 : Properties of Context-Free Languages Part I

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Automata, Languages and Computation Chapter 7/I

Properties of context-free languages



Chapter 7/I

- Eliminating useless symbols : we can delete symbols that do not contribute to the derivation process
- 2 Eliminating ε-productions : we can eliminate all derivations generating the empty string
- Eliminating unary productions : we can eliminate chains of productions that do not change the length of the sentential forms
- 4 CFG simplification : combine all presented elimination techniques
- 5 Chomsky normal form : every CFL has a CFG in special form

CFG semplification

Let G be some CFG. We can eliminate some grammatical symbols and some productions **preserving** the generated language

The motivation is to make the grammar easier to process

We investigate the following techniques :

- elimination of variable and terminal symbols that do not appear in any derivation for strings in the language
- elimination of $\epsilon\text{-productions, that is, productions of the form }A\to\epsilon$
- elimination of unary productions, that is, productions of the form $A \to B$

Useless symbols

Assume a CFG G = (V, T, P, S). Symbol $X \in V \cup T$ is called

- reachable if there exists a derivation $S \stackrel{*}{\Rightarrow} \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$
- generating if there exists a derivation X ⇒ w for some w ∈ T*
- **useful** if it is reachable and generating; otherwise, X is called **useless**

Example

Consider the CFG G with the following productions

$$S \to AB \mid a$$

 $A \to b$

S, A, a, b are generating, B is not generating

In order to eliminate B we need to eliminate the production $S \rightarrow AB$, resulting in the new grammar

$$S \to a$$

 $A \to b$

Now only S and a are reachable

After eliminating A and b, the resulting grammar has the only production $S \rightarrow a$

Example

Note :

- If we start by checking the reachable symbols, we find that no production of the initial grammar must be eliminated
- If we subsequently check for the generating symbols, we have to eliminate *B*, resulting in a grammar that has unreachable symbols

Removal of non-generating symbols might break reachability relation

Elimination of useless symbols

Let us assume we already have algorithms for computing the sets of generating and reachable symbols of a CFG

We present these algorithms in the next slides

Algorithm Given as input a CFG G = (V, T, P, S) with $L(G) \neq \emptyset$

- we build $G_1 = (V_1, T_1, P_1, S)$ by eliminating from G all non-generating symbols (in G) and all productions in which they appear $(S \in V_1 \text{ since } L(G) \neq \emptyset)$
- we build $G_2 = (V_2, T_2, P_2, S)$ by eliminating from G_1 all non-reachable symbols (in G_1) and all productions in which they appear

Algorithm for generating symbols

Let G = (V, T, P, S). We compute the set g(G) of all generating symbols of G by means of the following inductive algorithm

Base $g(G) \leftarrow T$

Induction if $(A \rightarrow X_1 X_2 \cdots X_n) \in P$ and $X_i \in g(G)$ for each *i* with $1 \leq i \leq n$, then

$$g(G) \leftarrow g(G) \cup \{A\}$$

This algorithm is bottom-up, since information is transferred from the right-hand side of a production to its left-hand side

Example

Consider the CFG G with productions

$$S \to AB \mid a$$

 $A \to b$

At the base step we have $g(G) = \{a, b\}$

From $S \rightarrow a$ we add S to g(G); from $A \rightarrow b$ we add A to g(G). No other production can contribute to set g(G)

We thus have $g(G) = \{S, A, a, b\}$

Algorithm for reachable symbols

Let G = (V, T, P, S). We can compute the set r(G) of all reachable symbols of G using the following inductive algorithm

Base $r(G) \leftarrow \{S\}$

Induction if $(A \rightarrow X_1 X_2 \cdots X_n) \in P$ and $A \in r(G)$, then for each *i* with $1 \leq i \leq n$

$$r(G) \leftarrow r(G) \cup \{X_i\}$$

This algorithm is top-down, since information is transferred from the left-hand side of a production to its right-hand side

Example

Consider the CFG G with productions

$$S \to AB \mid a$$

 $A \to b$

At the base step we have $r(G) = \{S\}$

From $S \rightarrow AB$ we add A and B to r(G). From $S \rightarrow a$ we add a to r(G). From $A \rightarrow b$ we add b to r(G)

We thus obtain $r(G) = \{S, A, B, a, b\}$

Elimination of ϵ -productions

Observation : If $\epsilon \in L$ we **cannot** eliminate ϵ -productions preserving the generated language

We prove that if L is a context-free language, then there is a CFG without ϵ -productions that generates $L \smallsetminus \{\epsilon\}$

String ϵ must be processed separately

Elimination of ϵ -productions

Variable *A* is **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$

Idea : If A is nullable and there exists a production $B \rightarrow CAD$, then

- \bullet we remove productions with right-hand side ϵ
- we construct two alternative versions of the above production
 - $B \rightarrow CD$ A generates ϵ $B \rightarrow CAD$ A generates other strings

If also C and D are nullable, we have to remove all possible combinations of C, A and D from production $B \rightarrow CAD$

Algorithm for nullable variables

Let G = (V, T, P, S). We can compute the set n(G) of all nullable variables of G by means of the following inductive algorithm

Base
$$n(G) \leftarrow \{A \mid (A \rightarrow \epsilon) \in P\}$$

Induction If there exists in G a production $A \rightarrow B_1 B_2 \cdots B_k$ such that $B_i \in n(G)$ for each $i, 1 \leq i \leq k$, then

$$n(G) \leftarrow n(G) \cup \{A\}$$

Very similar to the algorithm for generating symbols

Elimination of ϵ -productions

Let G = (V, T, P, S) be some CFG. Given n(G), we can build a new CFG $G_1 = (V, T, P_1, S)$ where P_1 is computed from P as follows

- each production $(A \rightarrow \epsilon) \in P$ is excluded from P_1
- let $p: (A \to X_1 X_2 \cdots X_k) \in P$ with $k \ge 1$; define $\mathcal{N} = \{i_1, i_2, \dots, i_m\}$ as the set of all indices of nullable variables $X_i, m \le k$
- for every possible choice of set N' ⊆ N, we add to P₁ a production constructed from p by deleting each X_i with i ∈ N'

Exception : In case m = k, we do not add to P_1 the null production $A \rightarrow \epsilon$

Example

Elimination of ϵ -production from CFG G with productions

$$S \to AB$$
$$A \to aAA \mid \epsilon$$
$$B \to bBB \mid \epsilon$$

We first compute set n(G)

•
$$A, B \in n(G)$$
 since $A \to \epsilon$ and $B \to \epsilon$

•
$$S \in n(G)$$
 since $S \to AB$, with $A, B \in n(G)$

Example

From $S \rightarrow AB$ we construct the new productions $S \rightarrow AB \mid A \mid B$

From $A \rightarrow aAA$ we construct the new productions $A \rightarrow aAA \mid aA \mid a$

From $B \rightarrow bBB$ we construct the new productions $B \rightarrow bBB \mid bB \mid b$

The resulting CFG G_1 has productions

$$S \rightarrow AB \mid A \mid B$$
$$A \rightarrow aAA \mid aA \mid a$$
$$B \rightarrow bBB \mid bB \mid b$$

and we have $L(G_1) = L(G) \smallsetminus \{\epsilon\}$

Elimination of unary productions

Let G = (V, T, P, S) be some CFG. A **unary** production has the form $A \rightarrow B$, where both A and B are variables in V

Note : $A \rightarrow a$ and $A \rightarrow \epsilon$ are not unary productions

We can eliminate unary productions by expanding the variables in the right-hand side

Example

Our grammar for arithmetic expressions with productions

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

$$F \rightarrow I \mid (E)$$

$$T \rightarrow F \mid T * F$$

$$E \rightarrow T \mid E + T$$

has unary productions $E \rightarrow T$, $T \rightarrow F$ and $F \rightarrow I$

Expanding the right-hand side of production $E \rightarrow T$ results in

$$E \to F \mid T * F$$

which introduces a new unary production $E \rightarrow F$

Example

If we in turn expand the right-hand side of $E \rightarrow F$ we get

$$E \rightarrow I \mid (E)$$

Finally, if we expand $E \rightarrow I$ we get

$$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

The method of successive expansions **does not work** if there is some cycle among unary rules, such as in

$$A \rightarrow B, B \rightarrow C, C \rightarrow A$$

Elimination of unary productions

We now present a method based on the notion of unary pairs which eliminates the unary productions in the general case

Let G = (V, T, P, S) be some CFG. (A, B) is a **unary pair** if $A \stackrel{*}{\Rightarrow} B$ using **only** unary productions

Note : For productions $A \rightarrow BC$ and $C \rightarrow \epsilon$ we have $A \stackrel{*}{\Rightarrow} B$; however, we have not used unary productions only

Algorithm for unary pairs

Let G = (V, T, P, S). We can compute the set u(G) of all unary pairs of G by means of the following inductive algorithm

Base
$$u(G) \leftarrow \{(A, A) \mid A \in V\}$$

Induction If $(A, B) \in u(G)$ and $(B \rightarrow C) \in P$, then

$$u(G) \leftarrow u(G) \cup \{(A, C)\}$$

Compare with the algorithm for reachable symbols

Example

Consider the CFG

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$
$$F \rightarrow I \mid (E)$$
$$T \rightarrow F \mid T * F$$
$$E \rightarrow T \mid E + T$$

In the base step we derive the unary pairs (E, E), (T, T), (F, F) e (I, I)

Example

In the inductive step

• from
$$(E, E)$$
 and $E \rightarrow T$ we add pair (E, T)

- from (E, T) and $T \rightarrow F$ we add pair (E, F)
- from (E, F) and $F \rightarrow I$ we add pair (E, I)
- from (T, T) and $T \rightarrow F$ we add pair (T, F)
- from (T, F) and $F \rightarrow I$ we add pair (T, I)
- from (F, F) and $F \rightarrow I$ we add pair (F, I)

Eliminating unary productions

Let G = (V, T, P, S) be some CFG. We produce a new CFG $G_1 = (V, T, P_1, S)$, where P_1 is constructed from P as follows

- compute u(G)
- for each (A, B) ∈ u(G) and for each (B → α) ∈ P which is not a unary production, add to P₁ the production A → α

Note :

- In the second step, we might have A = B; in this way non-unary productions in P are all transferred to P₁
- Unary productions are filtered

Example

We eliminate unary productions from CFG

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$
$$F \rightarrow I \mid (E)$$
$$T \rightarrow F \mid T * F$$
$$E \rightarrow T \mid E + T$$

We have already computed set u(G) in a previous example

Example

The second step of the algorithm results in the following productions

Pair	Productions
(E, E)	$E \rightarrow E + T$
(E, T)	$E \rightarrow T * F$
(E, F)	$E \rightarrow (E)$
(E, I)	$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(T, T)	$T \rightarrow T * F$
(T, F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(F,F)	$F \rightarrow (E)$
(F, I)	$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(I, I)	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Example

Summing up, after eliminating unary productions from the grammar ${\it G}$ with productions

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$
$$F \rightarrow I \mid (E)$$
$$T \rightarrow F \mid T * F$$
$$E \rightarrow T \mid E + T$$

we have the CFG G_1 with productions

$$E \to E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1$$

$$T \to T * F | (E) | a | b | Ia | Ib | I0 | I1$$

$$F \to (E) | a | b | Ia | Ib | I0 | I1$$

$$I \to a | b | Ia | Ib | I0 | I1$$

CFG simplification

When simplifying a CFG we need to pay special attention to the **order** in which we apply the previous transformations

The correct ordering is

- elimination of ϵ -productions
- elimination of unary productions
- elimination of useless symbols

Chomsky normal form

A CFG is in **Chomsky normal form**, or CNF for short, if its productions have one of the two forms

- $A \rightarrow BC$, with $A, B, C \in V$
- $A \rightarrow a$, with $A \in V$ and $a \in T$

and the grammar does not have useless symbols

We show that every CFL without the empty string ϵ can be generated by CNF grammar

Chomsky normal form

In order to transform a CFG in CNF, we first need to eliminate in the **specified order**

- ϵ -productions
- unary productions
- useless symbols

The resulting grammar has productions of the form

• $A \rightarrow a$

• $A \rightarrow \alpha$, where $\alpha \in (V \cup T)^*$ and $|\alpha| \ge 2$

Chomsky normal form

To transform the previous CFG in CNF, we need to perform two further transformations

- right-hand sides of length 2 or larger must only have variables
- right-hand sides of length larger than 2 must be decomposed into chains of productions with only two variables in their right-hand side

First transformation

For each production with right-hand side α such that $|\alpha| \ge 2$ and for each **occurrence** in α of $a \in T$

- construct a new production $A \rightarrow a$ (A is a fresh variable)
- use A in place of a in α

Second transformation

For each production of the form

$$A \rightarrow B_1 B_2 \cdots B_k, \quad k \ge 3$$

- introduce fresh variables $C_1, C_2, \ldots, C_{k-2}$
- replace the production with the chain of new productions

$$A \rightarrow B_1 C_1$$

$$C_1 \rightarrow B_2 C_2$$

$$\vdots$$

$$C_{k-3} \rightarrow B_{k-2} C_{k-2}$$

$$C_{k-2} \rightarrow B_{k-1} B_k$$

Example

Consider the CFG from the previous example

$$E \to E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1$$

$$T \to T * F | (E) | a | b | Ia | Ib | I0 | I1$$

$$F \to (E) | a | b | Ia | Ib | I0 | I1$$

$$I \to a | b | Ia | Ib | I0 | I1$$

The first transformation adds productions for the terminal symbols

$$\begin{array}{cccc} A \rightarrow a & B \rightarrow b & Z \rightarrow 0 & O \rightarrow 1 \\ P \rightarrow + & M \rightarrow * & L \rightarrow (& R \rightarrow) \end{array}$$

Example

The first transformation results in the CFG

$$E \rightarrow EPT | TMF | LER | a | b | IA | IB | IZ | IO$$

$$T \rightarrow TMF | LER | a | b | IA | IB | IZ | IO$$

$$F \rightarrow LER | a | b | IA | IB | IZ | IO$$

$$I \rightarrow a | b | IA | IB | IZ | IO$$

$$A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1$$

$$P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow)$$

Example

The second transformations performs the following replacements

•
$$E \rightarrow EPT$$
 replaced by $E \rightarrow EC_1, C_1 \rightarrow PT$

•
$$E \rightarrow TMF, T \rightarrow TMF$$
 replaced by

$$E \to TC_2, T \to TC_2, C_2 \to MF$$

•
$$E \rightarrow LER, T \rightarrow LER, F \rightarrow LER$$
 replaced by
 $E \rightarrow LC_3, T \rightarrow LC_3, F \rightarrow LC_3, C_3 \rightarrow ER$

Some variable optimization has been used

Example

The second transformation results in the final CFG in CNF

$$E \rightarrow EC_{1} | TC_{2} | LC_{3} | a | b | IA | IB | IZ | IO$$

$$T \rightarrow TC_{2} | LC_{3} | a | b | IA | IB | IZ | IO$$

$$F \rightarrow LC_{3} | a | b | IA | IB | IZ | IO$$

$$I \rightarrow a | b | IA | IB | IZ | IO$$

$$C_{1} \rightarrow PT, C_{2} \rightarrow MF, C_{3} \rightarrow ER$$

$$A \rightarrow a, B \rightarrow b, Z \rightarrow 0, O \rightarrow 1$$

$$P \rightarrow +, M \rightarrow *, L \rightarrow (, R \rightarrow)$$

Exercise

Cast into CNF the CFG $G = (\{S, A, B\}, \{a, b\}, P, S)$ with production set P

$$S \rightarrow bA \mid aB$$
$$A \rightarrow bAA \mid aS \mid a$$
$$B \rightarrow aBB \mid bS \mid b$$

There are no ϵ -productions, unary productions, or useless symbols. Therefore we apply the two transformations for the construction of the CNF

Exercise

The first transformation performs he following replacements

- $S \rightarrow bA$ replaced by $C_b \rightarrow b$ and $S \rightarrow C_bA$
- $S \rightarrow aB$ replaced by $C_a \rightarrow a$ and $S \rightarrow C_aB$
- $A \rightarrow bAA$ replaced by $A \rightarrow C_bAA$
- $A \rightarrow aS$ replaced by $A \rightarrow C_aS$
- $B \rightarrow aBB$ replaced by $B \rightarrow C_aBB$

•
$$B \rightarrow bS$$
 replaced by $B \rightarrow C_bS$

Exercise

The second transformation performs he following replacements

- $A \rightarrow C_b A A$ replaced by $A \rightarrow C_b D_1$ and $D_1 \rightarrow A A$
- $B \rightarrow C_a BB$ replaced by $B \rightarrow C_a D_2$ and $D_2 \rightarrow BB$

Exercise

The resulting CFG is

$$G_1 = (\{S, A, B, C_a, C_b, D_1, D_2\}, \{a, b\}, P', S)$$

where P' consists of the following productions

$$S \rightarrow C_b A \mid C_a B$$

$$A \rightarrow C_a S \mid C_b D_1 \mid a$$

$$B \rightarrow C_b S \mid C_a D_2 \mid b$$

$$D_1 \rightarrow A A$$

$$D_2 \rightarrow B B$$

$$C_a \rightarrow a$$

$$C_b \rightarrow b$$

Exercise

Given a CFG in CNF, how many steps are needed in order to generate a sentential form of length 9 having 2 variables and 7 terminal symbols? Discuss your answer

Solution : In CNF every production has one of the forms $A \rightarrow BC$, $A \rightarrow b$

To generate a sentential form of length $n \ge 1$ entirely composed by variables, we need n - 1 derivation steps (proof by induction on n)

Exercise

Thus 8 steps are needed for a sentential form of length 9 with 9 variables

In addition, 7 variables must become terminal symbols by means of productions of the form $A \rightarrow a$. Thus we need seven more steps in the derivation

Overall, we need 8+7=15 derivation steps

Greibach normal form

A CFG is in $\ensuremath{\textbf{Greibach}}$ normal form (GNF) if every production has the form

$$A \rightarrow a\alpha$$

with $a \in T$ and $\alpha \in V^*$

Important properties of GNF :

- every nonempty CFL with non-empty strings only has a GNF grammar
- a grammar in GNF generates a string of length *n* in exactly *n* steps