Master Degree in Computer Engineering
 Final Exam for
 Automata, Languages and Computation

January 30th, 2024

1. [6 points] Assume the NFA A whose transition function is graphically represented below.

Consider the algorithm for transforming a FA into a regular expression, based on state elimination. Apply the following steps in the given order:
(a) eliminate state q_{1} from A, and display the resulting automaton A^{\prime};
(b) eliminate state q_{3} from A^{\prime}, and display the resulting automaton $A^{\prime \prime}$;
(c) convert $A^{\prime \prime}$ into the equivalent regular expression $E_{q_{2}}$.

If you simplify any of the resulting regular expressions, add some discussion.
Solution Recall that, for every regular expression R, we have $\emptyset+R=R, \emptyset R=R \emptyset=\emptyset$, and $\epsilon R=R \epsilon=R$. We use these simplifications several times below.
(a) After the elimination of q_{1} from A we obtain the automaton A^{\prime}, graphically represented as

(b) After the elimination of q_{3} from A^{\prime} we obtain the automaton $A^{\prime \prime}$, graphically represented as

(c) The automaton $A^{\prime \prime}$ has two states, with the initial and the final states representing distinct states. We then need to apply the expression $E_{q}=\left(R+S U^{*} T\right)^{*} S U^{*}$.
Considering that in our case we have

$$
\begin{aligned}
R & =\mathbf{1 1}^{*} \mathbf{1} \\
S & =\mathbf{0}+\left(\mathbf{0}+\mathbf{1 1}^{*} \mathbf{0}\right) \mathbf{0}^{*} \mathbf{1} \\
U & =\mathbf{0 0}^{*} \mathbf{1} \\
T & =\emptyset
\end{aligned}
$$

we obtain the regular expression

$$
\begin{aligned}
E_{q_{2}} & =\left(\mathbf{1 1}^{*} \mathbf{1}+\left(\mathbf{0}+\left(\mathbf{0}+\mathbf{1 1}^{*} \mathbf{0}\right) \mathbf{0}^{*} \mathbf{1}\right)\left(\mathbf{0 0} \mathbf{0}^{*} \mathbf{1}\right)^{*} \emptyset\right)^{*}\left(\mathbf{0}+\left(\mathbf{0}+\mathbf{1 1}^{*} \mathbf{0}\right) \mathbf{0}^{*} \mathbf{1}\right)\left(\mathbf{0} 0^{*} \mathbf{1}\right)^{*} \\
& =\left(\mathbf{1 1}^{*} \mathbf{1}+\emptyset\right)^{*}\left(\mathbf{0}+\left(\mathbf{0}+\mathbf{1 1} 1^{*} \mathbf{0}\right) \mathbf{0}^{*} \mathbf{1}\right)\left(\mathbf{0 0 ^ { * }} \mathbf{1}\right)^{*} \\
& =\left(\mathbf{1 1}^{*} \mathbf{1}\right)^{*}\left(\mathbf{0}+\left(\mathbf{0}+\mathbf{1 1}^{*} \mathbf{0}\right) \mathbf{0}^{*} \mathbf{1}\right)\left(\mathbf{0} \mathbf{0}^{*} \mathbf{1}\right)^{*} .
\end{aligned}
$$

2. [9 points] Consider the following languages, defined over the alphabet $\Sigma=\{a, b\}$:

$$
\begin{aligned}
& L_{1}=\left\{b a^{m} b a^{n} b \mid m, n \geq 1, m<n\right\} \\
& L_{2}=\left\{b a^{m} a^{n} b \mid m, n \geq 1, m<n\right\} \\
& L_{3}=L_{2} L_{1}
\end{aligned}
$$

For each of the above languages, state whether it belongs to REG, to CFL \backslash REG, or else whether it is outside of CFL. Provide a mathematical proof for all of your answers.

Solution

(a) L_{1} belongs to the class CFL \backslash REG.

We first show that L_{1} is not a regular language, by applying the pumping lemma for this class.
Let N be the pumping lemma constant for L_{1}. We choose the string $w=b a^{N} b a^{N+1} b \in L_{1}$ with $|w| \geq N$, and consider all possible factorizations $w=x y z$ satisfying the conditions $|y| \geq 1$ and $|x y| \leq N$. We distinguish two cases.

Case 1: y spans the leftmost occurrence of b in w, and possibly more symbols from w. This means that $x=\epsilon$. We then choose $k=0$ and obtain the string $w_{0}=x y^{0} z=z$ which has fewer than 3 occurrences of symbol b, and therefore $w_{0} \notin L_{1}$.
Case 2: y does not span the leftmost occurrence of b in w. Because of the condition $|x y| \leq N$, we have that y can only contain occurrences of symbol a, with these occurrences placed to the left of the second occurrence of symbol b in w. In this case, we choose $k=2$ and obtain the string $w_{2}=x y^{2} z$ which has the form $b a^{N+|y|} b a^{N+1} b$. Because of the condition $|y| \geq 1$, we have that $N+|y| \geq N+1$, and therefore $w_{2} \notin L_{1}$.
Since we have considered all possible factorizations for string w, we must conclude that L_{1} is not a regular language.
As a second part of the answer, we need to show that L_{1} belongs to the class CFL. Consider the CFG G_{1} with productions:

$$
\begin{aligned}
& S \rightarrow b A b \\
& A \rightarrow a A a \mid a B a \\
& B \rightarrow B a \mid b a
\end{aligned}
$$

It is not difficult to see that $L\left(G_{1}\right)=L_{1}$.
(b) L_{2} belongs to the class REG.

To see this, we observe that we can rewrite the definition of this language as $L_{2}=\left\{b a^{n} b \mid n \geq 3\right\}$. It is then easy to see that the regular expression $R=\boldsymbol{b a a a a}^{*} \boldsymbol{b}$ generates L_{2}.
(c) L_{3} belongs to the class $\mathrm{CFL} \backslash \mathrm{REG}$.

The easy part here is to show that L_{3} is in CFL. We have already seen that L_{2} is in REG and therefore in CFL, and we have already shown that L_{1} is in CFL. Since $L_{3}=L_{2} L_{1}$, and since the class CFL is closed under concatenation, we conclude that L_{3} is in CFL.
We now prove that L_{3} is not a regular language, again by applying the pumping lemma for this class. Let N be the pumping lemma constant for L_{3}. We choose the string $w=b a^{3} b b a^{N} b a^{N+1} b \in$ L_{3} with $|w| \geq N$, and consider all possible factorizations $w=x y z$ satisfying the conditions $|y| \geq 1$ and $|x y| \leq N$. We observe that string w has three runs of symbols a : the first of length 3 , the second of length N, and the third of length $N+1$. We call these three runs block 1 , block 2 , and block 3 , respectively. We distinguish three cases.
Case 1: y spans at least one occurrence of b from w. We then choose $k=0$ and obtain the string $w_{0}=x y^{0} z=x z$ which has fewer than 5 occurrences of symbol b, and therefore $w_{0} \notin L_{3}$.
Case 2: y spans zero occurrence of b and a few occurrences of symbol a from block 1 only. We choose $k=0$ and obtain the string $w_{0}=x y^{0} z=x z$ which has the form $b a^{3-|y|} b a^{N} b a^{N+1} b$. Because of the condition $|y| \geq 1$, we have $3-|y|<3$, and therefore $w_{0} \notin L_{3}$.
Case 3: y spans zero occurrence of b and a few occurrences of symbol a from block 2 only. We choose $k=2$ and obtain the string $w_{2}=x y^{2} z$ which has the form $b a^{3} b b a^{N+|y|} b a^{N+1} b$. Because of the condition $|y| \geq 1$, we have that $N+|y| \geq N+1$, and therefore $w_{2} \notin L_{3}$.
Since we have considered all possible factorizations for string w, we must conclude that L_{3} is not a regular language.
We observe that the above proof showing that L_{3} is not in REG is a little bit involved. There is an alternative, simpler way of proving that L_{3} is not a regular language. Assume by now
that L_{3} is a regular language. From known properties of regular languages, it follows that L_{3}^{R} is also a regular language, where R is the string reversal operator, extended to languages as usual. Observing that we have $L_{3}^{R}=L_{1}^{R} L_{2}^{R}$, the language L_{3}^{R} can be rewritten as

$$
L_{3}^{R}=\left\{b a^{m} b a^{n} b b a^{p} b \mid m, n \geq 1, m>n, p \geq 3\right\}
$$

We can now apply the pumping lemma to L_{3}^{R}, resulting in a proof that is very similar to the proof for L_{1}, consisting only of two cases. We then find that L_{3}^{R} is not a regular language, and we must therefore conclude that L_{3} cannot be regular as well.
3. [6 points] With reference to the membership problem for context-free languages, answer the following two questions.
(a) Specify the dynamic programming algorithm reported in the textbook for the solution of this problem.
(b) Consider the CFG G in Chomsky normal form defined by the following rules:

$$
\begin{aligned}
S & \rightarrow C D \\
C & \rightarrow A C^{\prime} \mid c \\
C^{\prime} & \rightarrow C B \\
A & \rightarrow a \\
B & \rightarrow b \\
D & \rightarrow D D \mid d
\end{aligned}
$$

Assuming as input the CFG G and the string $w=a a c b b d d d d$, trace the application of the algorithm in (a).

Solution

(a) The required dynamic programming algorithm is reported in Section 7.4 .4 of the textbook.
(b) On input w and G, the algorithm constructs the table reported below.

\{S\}								
\{ S \}								
\{S\}								
\{S\}								
\{C\}								
	$\left\{C^{\prime}\right\}$				$\{D\}$			
	$\{C\}$				$\{D\}$	$\{D\}$		
		$\left\{C^{\prime}\right\}$			$\{D\}$	$\{D\}$	$\{D\}$	
$\{A\}$	$\{A\}$	$\{C\}$	$\{B\}$	$\{B\}$	$\{D\}$	$\{D\}$	$\{D\}$	$\{D\}$
a	a	c	b	b	d	d	d	d

4. [5 points] Assess whether the following statements are true or false. Provide motivations for all of your answers.
(a) Let L_{1}, L_{3} be in REG (the class of regular languages) and let L_{2} be in CFL. Then the language $L_{1} L_{2} L_{3}$ is always in REG.
(b) Let L_{1}, L_{3} be in REG and let L_{2} be in CFL. Then the language $L_{1} L_{2} L_{3}$ is always in CFL.
(c) The class RE defined over the alphabet $\Sigma=\{0,1\}$ is closed under complementation.
(d) The class \mathcal{P} of languages over the alphabet $\Sigma=\{0,1\}$ that can be recognized in polynomial time by a TM is closed under complementation.

Solution

(a) False. Consider as a counterexample the regular languages $L_{1}=L_{3}=\{\epsilon\}$ and the context-free language $L_{2}=\left\{a^{n} b^{n} \mid n \geq 1\right\}$. Observe that $L_{1} L_{2} L_{3}=L_{2}$, and we know that L_{2} is not a regular language.
(b) True. We know that a language in REG is also a language in CFL. We also know that the class CFL is closed under concatenation. Therefore $L^{\prime}=L_{1} L_{2}$ must be in CFL, and $L^{\prime} L_{3}=L_{1} L_{2} L_{3}$ must be in CFL.
(c) False. As a counterexample consider the language $L_{n e}$ in RE, defined in the textbook. Consider also the language L_{e}, which is the complement of $L_{n e}$ with respect to Σ^{*}. We now that L_{e} is not in RE.
(d) True. Consider an arbitrary language $L \in \mathcal{P}$. By the definition of the class \mathcal{P}, there exists a TM M such that $L(M)=L$, and M stops after a polynomial number of steps in the size of its input w. We can then construct a TM M^{\prime} that, given as input a string w, simulates M on w. When the simulation stops in a state q, that is, when there is no next move for M, M^{\prime} moves to a final state if q is not a final state for M, and M^{\prime} moves to a non-final state if q is a final state
for M. It is easy to see that $L\left(M^{\prime}\right)=\bar{L}$ and that M^{\prime} runs in polynomial time. We therefore conclude that \mathcal{P} is closed under complementation.
5. [7 points] Let R be the string reversal operator, extended to languages as usual. Consider the following property of the RE languages defined over the alphabet $\Sigma=\{0,1\}$

$$
\mathcal{P}=\left\{L \mid L \in \mathrm{RE}, L \cap L^{R}=\emptyset\right\}
$$

where the condition $L \cap L^{R}=\emptyset$ means that for every string $w \in L, w^{R}$ does not belong to L. Define $L_{\mathcal{P}}=\{\operatorname{enc}(M) \mid L(M) \in \mathcal{P}\}$.
(a) Use Rice's theorem to show that $L_{\mathcal{P}}$ is not in REC.
(b) State whether $L_{\mathcal{P}}$ is in RE \backslash REC or else outside of RE.

Solution

(a) We have to show that property \mathcal{P} is not trivial.

- $\mathcal{P} \neq \emptyset$. Consider the language $L=\{1100\}$. Since L is finite, L is also in RE. Observe that $L^{R}=\{0011\}$ and $L \cap L^{R}=\emptyset$. Therefore $L \in \mathcal{P}$.
- $\mathcal{P} \neq$ RE. Consider the language $L=\{1100,0011\}$. Since L is finite, L is also in RE. Observe that $L \cap L^{R}=L \neq \emptyset$, and therefore $L \notin \mathcal{P}$.
(b) We now show that $L_{\mathcal{P}}$ is not in RE. The most convenient way to do this is to consider the complement language $\overline{L_{\mathcal{P}}}=L_{\overline{\mathcal{P}}}$, where $\overline{\mathcal{P}}$ is the complement of class \mathcal{P} with respect to RE and can be specified as

$$
\overline{\mathcal{P}}=\left\{L \mid L \in \mathrm{RE}, L \cap L^{R} \neq \emptyset\right\}
$$

We specify a nondeterministic TM N such that $L(N)=L_{\mathcal{P}}$. Since every nondeterministic TM can be converted into a standard TM, this shows that $L_{\overline{\mathcal{P}}}$ is in RE. Our nondeterministic TM N takes as input the encoding of a TM M and performs the following steps.

- N nondeterministically guesses a string $w \in \Sigma^{*}$ and checks that $w \in L(M)$ and $w^{R} \in L(M)$ are both satisfied.
- If the previous step terminates and is successful, N ends the computation in a final state. In all other cases, N ends the computation in a non-final state or runs for ever.
It is not difficult to see that $L(N)=L_{\overline{\mathcal{P}}}$.
Since $L_{\overline{\mathcal{P}}}$ is in RE, if its complement language $L_{\mathcal{P}}$ were in RE as well, then we would conclude that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have already shown in (a) that $L_{\mathcal{P}}$ is not in REC. We must therefore conclude that $L_{\mathcal{P}}$ is not in RE.

