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1. [6 points] Assume the NFA A whose transition function is graphically represented below.
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Consider the algorithm for transforming a FA into a regular expression, based on state elimination.
Apply the following steps in the given order:

(a) eliminate state q1 from A, and display the resulting automaton A′;

(b) eliminate state q3 from A′, and display the resulting automaton A′′;

(c) convert A′′ into the equivalent regular expression Eq2 .

If you simplify any of the resulting regular expressions, add some discussion.

Solution Recall that, for every regular expression R, we have ∅ + R = R, ∅R = R∅ = ∅, and
ϵR = Rϵ = R. We use these simplifications several times below.

(a) After the elimination of q1 from A we obtain the automaton A′, graphically represented as
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(b) After the elimination of q3 from A′ we obtain the automaton A′′, graphically represented as
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(c) The automaton A′′ has two states, with the initial and the final states representing distinct states.
We then need to apply the expression Eq = (R+ SU∗T )∗SU∗.

Considering that in our case we have

R = 11∗1

S = 0+ (0+ 11∗0)0∗1

U = 00∗1

T = ∅

we obtain the regular expression

Eq2 = (11∗1+ (0+ (0+ 11∗0)0∗1)(00∗1)∗∅)∗(0+ (0+ 11∗0)0∗1)(00∗1)∗

= (11∗1+ ∅)∗(0+ (0+ 11∗0)0∗1)(00∗1)∗

= (11∗1)∗(0+ (0+ 11∗0)0∗1)(00∗1)∗ .

2. [9 points] Consider the following languages, defined over the alphabet Σ = {a, b}:

L1 = {bambanb | m,n ≥ 1, m < n}
L2 = {bamanb | m,n ≥ 1, m < n}
L3 = L2L1

For each of the above languages, state whether it belongs to REG, to CFL∖REG, or else whether it
is outside of CFL. Provide a mathematical proof for all of your answers.

Solution

(a) L1 belongs to the class CFL∖REG.

We first show that L1 is not a regular language, by applying the pumping lemma for this class.
Let N be the pumping lemma constant for L1. We choose the string w = baNbaN+1b ∈ L1 with
|w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1 and
|xy| ≤ N . We distinguish two cases.



Case 1: y spans the leftmost occurrence of b in w, and possibly more symbols from w. This means
that x = ϵ. We then choose k = 0 and obtain the string w0 = xy0z = z which has fewer than 3
occurrences of symbol b, and therefore w0 ̸∈ L1.

Case 2: y does not span the leftmost occurrence of b in w. Because of the condition |xy| ≤ N , we
have that y can only contain occurrences of symbol a, with these occurrences placed to the left
of the second occurrence of symbol b in w. In this case, we choose k = 2 and obtain the string
w2 = xy2z which has the form baN+|y|baN+1b. Because of the condition |y| ≥ 1, we have that
N + |y| ≥ N + 1, and therefore w2 ̸∈ L1.

Since we have considered all possible factorizations for string w, we must conclude that L1 is not
a regular language.

As a second part of the answer, we need to show that L1 belongs to the class CFL. Consider the
CFG G1 with productions:

S → bAb

A → aAa | aBa

B → Ba | ba

It is not difficult to see that L(G1) = L1.

(b) L2 belongs to the class REG.

To see this, we observe that we can rewrite the definition of this language as L2 = {banb | n ≥ 3}.
It is then easy to see that the regular expression R = baaaa∗b generates L2.

(c) L3 belongs to the class CFL∖REG.

The easy part here is to show that L3 is in CFL. We have already seen that L2 is in REG and
therefore in CFL, and we have already shown that L1 is in CFL. Since L3 = L2L1, and since the
class CFL is closed under concatenation, we conclude that L3 is in CFL.

We now prove that L3 is not a regular language, again by applying the pumping lemma for this
class. Let N be the pumping lemma constant for L3. We choose the string w = ba3bbaNbaN+1b ∈
L3 with |w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N . We observe that string w has three runs of symbols a: the first of length 3, the
second of length N , and the third of length N +1. We call these three runs block 1, block 2, and
block 3, respectively. We distinguish three cases.

Case 1: y spans at least one occurrence of b from w. We then choose k = 0 and obtain the string
w0 = xy0z = xz which has fewer than 5 occurrences of symbol b, and therefore w0 ̸∈ L3.

Case 2: y spans zero occurrence of b and a few occurrences of symbol a from block 1 only. We
choose k = 0 and obtain the string w0 = xy0z = xz which has the form ba3−|y|baNbaN+1b.
Because of the condition |y| ≥ 1, we have 3− |y| < 3, and therefore w0 ̸∈ L3.

Case 3: y spans zero occurrence of b and a few occurrences of symbol a from block 2 only. We
choose k = 2 and obtain the string w2 = xy2z which has the form ba3bbaN+|y|baN+1b. Because
of the condition |y| ≥ 1, we have that N + |y| ≥ N + 1, and therefore w2 ̸∈ L3.

Since we have considered all possible factorizations for string w, we must conclude that L3 is not
a regular language.

We observe that the above proof showing that L3 is not in REG is a little bit involved. There
is an alternative, simpler way of proving that L3 is not a regular language. Assume by now



that L3 is a regular language. From known properties of regular languages, it follows that LR
3 is

also a regular language, where R is the string reversal operator, extended to languages as usual.
Observing that we have LR

3 = LR
1 L

R
2 , the language LR

3 can be rewritten as

LR
3 = {bambanbbapb | m,n ≥ 1, m > n, p ≥ 3}

We can now apply the pumping lemma to LR
3 , resulting in a proof that is very similar to the

proof for L1, consisting only of two cases. We then find that LR
3 is not a regular language, and

we must therefore conclude that L3 cannot be regular as well.

3. [6 points] With reference to the membership problem for context-free languages, answer the following
two questions.

(a) Specify the dynamic programming algorithm reported in the textbook for the solution of this
problem.

(b) Consider the CFG G in Chomsky normal form defined by the following rules:

S → CD

C → AC ′ | c
C ′ → CB

A → a

B → b

D → DD | d

Assuming as input the CFG G and the string w = aacbbdddd, trace the application of the
algorithm in (a).

Solution

(a) The required dynamic programming algorithm is reported in Section 7.4.4 of the textbook.

(b) On input w and G, the algorithm constructs the table reported below.



a a c b b d d d d

{A} {A} {C} {B} {B} {D} {D} {D} {D}

{C ′} {D} {D} {D}

{C} {D} {D}

{C ′} {D}

{C}

{S}

{S}

{S}

{S}

4. [5 points] Assess whether the following statements are true or false. Provide motivations for all of
your answers.

(a) Let L1, L3 be in REG (the class of regular languages) and let L2 be in CFL. Then the language
L1L2L3 is always in REG.

(b) Let L1, L3 be in REG and let L2 be in CFL. Then the language L1L2L3 is always in CFL.

(c) The class RE defined over the alphabet Σ = {0, 1} is closed under complementation.

(d) The class P of languages over the alphabet Σ = {0, 1} that can be recognized in polynomial time
by a TM is closed under complementation.

Solution

(a) False. Consider as a counterexample the regular languages L1 = L3 = {ϵ} and the context-free
language L2 = {anbn | n ≥ 1}. Observe that L1L2L3 = L2, and we know that L2 is not a regular
language.

(b) True. We know that a language in REG is also a language in CFL. We also know that the class
CFL is closed under concatenation. Therefore L′ = L1L2 must be in CFL, and L′L3 = L1L2L3

must be in CFL.

(c) False. As a counterexample consider the language Lne in RE, defined in the textbook. Consider
also the language Le, which is the complement of Lne with respect to Σ∗. We now that Le is not
in RE.

(d) True. Consider an arbitrary language L ∈ P. By the definition of the class P, there exists a
TM M such that L(M) = L, and M stops after a polynomial number of steps in the size of its
input w. We can then construct a TM M ′ that, given as input a string w, simulates M on w.
When the simulation stops in a state q, that is, when there is no next move for M , M ′ moves to
a final state if q is not a final state for M , and M ′ moves to a non-final state if q is a final state



for M . It is easy to see that L(M ′) = L and that M ′ runs in polynomial time. We therefore
conclude that P is closed under complementation.

5. [7 points] Let R be the string reversal operator, extended to languages as usual. Consider the
following property of the RE languages defined over the alphabet Σ = {0, 1}

P = {L | L ∈ RE, L ∩ LR = ∅}

where the condition L ∩ LR = ∅ means that for every string w ∈ L, wR does not belong to L. Define
LP = {enc(M) | L(M) ∈ P}.

(a) Use Rice’s theorem to show that LP is not in REC.

(b) State whether LP is in RE∖REC or else outside of RE.

Solution

(a) We have to show that property P is not trivial.

• P ≠ ∅. Consider the language L = {1100}. Since L is finite, L is also in RE. Observe that
LR = {0011} and L ∩ LR = ∅. Therefore L ∈ P.

• P ̸= RE. Consider the language L = {1100, 0011}. Since L is finite, L is also in RE. Observe
that L ∩ LR = L ̸= ∅, and therefore L ̸∈ P.

(b) We now show that LP is not in RE. The most convenient way to do this is to consider the
complement language LP = LP , where P is the complement of class P with respect to RE and
can be specified as

P = {L | L ∈ RE, L ∩ LR ̸= ∅}

We specify a nondeterministic TM N such that L(N) = LP . Since every nondeterministic TM
can be converted into a standard TM, this shows that LP is in RE. Our nondeterministic TM N
takes as input the encoding of a TM M and performs the following steps.

• N nondeterministically guesses a string w ∈ Σ∗ and checks that w ∈ L(M) and wR ∈ L(M)
are both satisfied.

• If the previous step terminates and is successful, N ends the computation in a final state. In
all other cases, N ends the computation in a non-final state or runs for ever.

It is not difficult to see that L(N) = LP .

Since LP is in RE, if its complement language LP were in RE as well, then we would conclude
that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have
already shown in (a) that LP is not in REC. We must therefore conclude that LP is not in RE.


