
Master Degree in Computer Engineering

Final Exam for
Automata, Languages and Computation

February 22nd, 2024

1. [5 points] Consider the DFA A whose transition function is graphically depicted below (arcs with
double direction represent two arcs in opposite directions)

q0 q1 q2

q3 q4 q5

Start 0
1

1

0

10

1

1 0

1

0

(a) Provide the definition of equivalent pair of states for a DFA.

(b) Apply to A the tabular algorithm from the textbook for detecting pairs of equivalent states,
reporting all the intermediate steps.

(c) Specify the minimal DFA equivalent to A.

Solution

(a) The required definition can be found in Section 4.4.1 of the textbook.

(b) The textbook describes an inductive algorithm for detecting distinguishable state pairs. On input
A, the algorithm constructs the table reported below.

q1

q2

q3

q4

q5

q0 q1 q2 q3 q4

X Y X Y

Y X X

X X

Y X

X

We have marked with X the entries in the table corresponding to distinguishable state pairs that
are detected in the base case of the algorithm, that is, state pairs that can be distinguished by the
string ε. We have then marked with Y distinguishable state pairs detected at the next iteration
by some string of length one. At the successive iterations, strings of length larger than one do
not provide any new distinguishable state pairs.

(c) From the above table we get the following state equivalences: q0 ≡ q5, q1 ≡ q3 and q2 ≡ q4. This
results in three equivalence classes, which becomes the states of the minimal DFA equivalent
to A: p0 = {q0, q5}, p1 = {q1, q3}, p2 = {q2, q4}. The minimal DFA is then

p0 p1 p2
Start 0

1

1

0

1

2. [7 points] Consider the following languages, defined over the alphabet Σ = {a, b}:

L1 = {xby | x, y ∈ Σ∗, |x| = |y| = n, n ≥ 0}
L2 = {xby | x, y ∈ Σ∗, |x|+ |y| = 2n, n ≥ 0}

For each of the above languages, state whether it belongs to REG, to CFL∖REG, or else whether it
is outside of CFL. Provide a mathematical proof for all of your answers.

Solution

(a) A careful analysis of the definition of L1 reveals that this language contains only strings of odd
length greater equal than one, under te condition that the central symbol is an occurrence of b.
L1 belongs to the class CFL∖REG. We first show that L1 is not a regular language, by applying
the pumping lemma for this class.

Let N be the pumping lemma constant for L1. We choose the string w = aNbaN ∈ L1 with
|w| ≥ N , and consider all possible factorizations w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N . Because of the latter condition, we have that y can only contain occurrences of
symbol a from the part of w to the left of the central b.

According to the pumping lemma, the string wk = xykz should be in L1 for every k ≥ 0. Let
|y| = m ≥ 1 and consider k = 2. We have w2 = aN+mbaN . From m ≥ 1, we have N+m > N and
the only occurrence of b in w2 is no longer placed in the central position of the string, assuming
that w2 has odd length, which is not even guaranteed. We thus conclude that w2 ̸∈ L1, against
the statement of the pumping lemma, and L1 is not a regular language.

We now show that L1 belongs to the class CFL. Consider the CFG G with productions:

S → TST | b
T → a | b

It is very easy to see that L(G) = L1.

(b) Similarly to L1, the strings in L2 have all odd length greater equal than one, with at east one
occurrence of symbol b. However, this occurrence needs not be placed in the central position of
the string, since |x| and |y| need no longer be equal. For this reason, L2 is a regular language. It
is not difficult to see that L2 can be generated by the following regular expression

(a+ b)((a+ b)(a+ b))∗b(a+ b)((a+ b)(a+ b))∗+

((a+ b)(a+ b))∗b((a+ b)(a+ b))∗

An alternative solution to this question, perhaps simpler than the previous solution, can be
obtained as follows. Consider the language L′

2 containing all and only the strings over Σ of odd
length greater equal than one. Furthermore, consider the language L′′

2 containing all and only the
strings over Σ with at least one occurrence of b. It is not difficult to see that L′

2 and L′′
2 are both

regular languages, and that L2 = L′
2 ∩ L′′

2. Since we know that the intersection of two regular
languages is still a regular language, we can conclude that L2 is a regular language as well.

3. [5 points] Provide the construction we have seen in the context-free lectures that converts a regular
expression E into a CFG G such that L(E) = L(G). The construction uses structural induction on E.

Solution The required construction is reported in the slide number 62 of the lecture on context-free
grammars (file 05 context free grammars in the moodle page of the course).

4. [4 points] Assess whether the following statements are true or false. Provide motivations for all of
your answers.

(a) If the complement of a language L is finite, then L is in REG (the class of regular languages).

(b) If the language L1 ∪ L2 is in REG, then L1, L2 are both in REG.

(c) If a CFG G has only one variable, then L(G) is in REG.

(d) The class P of languages that can be recognized in polynomial time by a TM is closed under
concatenation.

Solution

(a) True. Let L be the complement of L. Since L is finite, L is also a regular language. We know

that regular languages are closed under complementation, therefore L must be a regular language

as well. We now observe that L = L.

(b) False. Consider as a counterexample the language L1 = {anbn | n ≥ 0} and the language
L2 = L1, where the complement is defined with respect to the alphabet Σ = {a, b}. We have
L1 ∪ L2 = Σ∗, which is a regular language. But we know that L1 is not in REG.

(c) False. As a counterexample consider the CFG with a single variable S, consisting of the rules
S→aSb and S→ϵ, generating the language {anbn | n ≥ 0} which is not in REG.

(d) True. Consider two arbitrary languages L1 and L2 in P. By the definition of the class P, there
exist TMs M1 and M2 that run in polynomial time and such that L(M1) = L1 and L(M2) = L2.
We then construct a TM Mc that works as follows.

• Given an input string w, M runs a loop for i = 0, ..., |w| executing the following actions.

– M factorizes w into w = uv with |u| = i and |v| = |w| − i.

– M simulates M1 on u and M2 on v

– If both u ∈ L(M1) and v ∈ L(M2), then M stops in a final state.

• If M completes the loop without any break, then it stops in a non-final state.

It is not difficult to see that L(M) = L1L2 and that M works in polynomial time. We therefore
conclude that P is closed under concatenation.

5. [5 points] Introduce the definition of multi-tape TM. Highlight the basic idea behind the proof of
equivalence between multi-tape TM and standard TM, discussing also the total computation time of
the construction.

Solution

The required definition and proof, along with the discussion of computation time, can be found in
Section 8.4.1 of the textbook.

6. [7 points] With reference to TMs, answer to the following questions.

(a) Consider the following languages

L1 = {enc(M) | L(M) contains exactly 5 strings}
L2 = {enc(M) | M contains exactly 5 tape symbols}

State whether the above languages are in the class REC, and provide a mathematical proof for
your answers.

(b) Consider the language

L3 = {enc(M1,M2) | L(M1) = L(M2)}

where enc(M1,M2) is some encoding of TMs M1 and M2. Using an appropriate reduction, show
that L3 cannot be in RE.

Solution

(a) Language L1 is not in REC. To show this, consider the following property of the RE languages

P = {L | L ∈ RE, |L| = 5}

and observe that L1 = LP = {enc(M) | L(M) ∈ P}. We can now apply Rice’s theorem and
show that property P is not trivial.

• P ≠ ∅. Consider the language L = {ϵ, 0, 1, 01, 10} which is in RE, and observe that L ∈ P.

• P ≠ RE. Consider the language {0, 1}∗ which is in RE, and observe that L ̸∈ P.

In contrast, language L2 is in REC. In fact, it is not difficult to devise a TM for L2 that takes
as input a string enc(M), verifies that it properly encodes a TM M , and checks that the tape
alphabet of M contains exactly 5 symbols.

(b) To prove that L3 is not in RE, we establish a reduction Le ≤m L3. The reduction takes as input
a string enc(M) and produces as output a string enc(M1,M2), where M1 = M and M2 is a TM
such that L(M2) = Σ∗.

We now show that the proposed mapping represents a valid reduction, that is, enc(M) ∈ Le if
and only if enc(M1,M2) ∈ L3.

enc(M) ∈ Le iff L(M) = ∅ (definition of Le)

iff L(M) = Σ∗ (definition of complementation)

iff L(M1) = L(M2) (definition of our mapping)
iff enc(M1,M2) ∈ L3 (definition of L3)

