THE CARDIOVASCULAR SYSTEM
THE HEART
LOCATION OF THE HEART

The heart is located within the thoracic cavity, medially between the lungs in the space known as the mediastinum.

It lies posteriorly to the sternum and costal cartilages, and rests on the superior surface of the diaphragm.

MEDIASTINUM:

space located in the central portion of the thoracic cavity

Together with the heart, other organs are located within the mediastinum: the great veins and arteries, the trachea and the esophagus

PLEURO-PULMONARY SPACES:

lateral spaces, on the right and left lateral portions of the thoracic cavity

They host the lungs and pleurae (= serous membranes of the lungs)
The heart is located with **two-thirds** of its volume **on the left of the midline**

This means that, imagining the sagittal plane that divides the body into two symmetric portions, the heart is located with $2/3$ of its volume on the left and only with $1/3$ on the right.

It is shaped like an **inverted cone**, where we identify:

- an APEX
- a BASE
- 2 main SURFACES
- 2 MARGINS (= the lines between 2 surfaces)
2 SURFACES:

1) ANTERIOR or STERNOCOSTAL surface:
 it is located posteriorly to the sternum and the ribs, or specifically the costal cartilages

2) POSTERO-INFERIOR or DIAPHRAGMATIC surface: it lies on the diaphragmatic muscle
2 MARGINS (= the lines between 2 surfaces)

1) LEFT MARGIN
2) RIGHT MARGIN

They are also named based on the way the two faces approach the margin.
2 MARGINS (= the lines between 2 surfaces)

1) OBTUSE MARGIN
 It is the rounded LEFT margin of the heart, formed mainly by the left ventricle to the left of the sternocostal surface.
 It is called the ‘obtuse’ margin because of the obtuse angle (>90 degrees) created between the anterior part of the heart and the left side, which is formed from the rounded lateral wall of the left ventricle.

2) ACUTE MARGIN
 It is the sharp angle formed mainly by the RIGHT ventricle and occupying the lower heart border.
 If you observe the angle formed between the anterior or sternocostal surface of the heart with the posterior or diaphragmatic surface of the heart, you can see that the angle between these two surfaces is less than 90 degrees, therefore an “acute” angle.
Orientation of the heart in the mediastinum

It is defined based on the apex or axis of the heart

APEX of the HEART
Facing: anteriorly downward and to the left

HEART AXIS (from the apex to the center of the base)
Directed: from back to front from the top to bottom from the right to the left
The image represents the heart located immediately behind the sternum, in the so-called anterior mediastinum.

In this image, the heart is represented still surrounded by the MEMBRANE that covers it, the PERICARDIUM.

PERICARDIUM: serous membrane of the body (together with the pleurae, the peritoneum and the tunica vaginalis that covers the testicles)

A serous membrane (also referred to a serosa) is one of the thin membranes that cover the walls and organs in the thoracic and abdominopelvic cavities. The parietal layers of the membranes line the walls of the body cavity (parietal refers to a cavity wall). The visceral layer of the membrane covers the organs (the viscera). Between the parietal and visceral layers is a very thin, fluid-filled serous space, or cavity.
The serous membranes behave like a CLOSED and EMPTY nylon bag that covers the entire fist, leaving the wrist free.

The pericardium is a closed, empty serous membrane that covers the heart from the outside.

The heart has a part of its surface that is in direct contact with a part of the pericardium.

\[\text{VISCERAL LAYER of PERICARDIUM or VISCERAL PERICARDIUM}\]

The visceral layer turns on itself and returns to cover the heart, but on a more external plane.

\[\text{PARIETAL LAYER of PERICARDIUM or PARIETAL PERICARDIUM}\]

The pericardium is a SINGLE membrane, with a VISCERAL portion and a PARIETAL portion.
The space between the parietal and the visceral layers of the pericardium:

PERICARDIAL CAVITY

It contains a minimum quantity of serous liquid which allows the sliding of the two pericardial layers, and the heart to pulsate and move without friction.

↓

It's basically an **EMPTY CAVITY**
In the image you can see the OUTER – PARIETAL – LAYER of the PERICARDIUM, seen from the outside

- It is a thicker layer with a greater consistency
- It is NOT transparent, but it is OPAQUE
- Cutting the parietal pericardium

we enter the pericardial cavity and observe:
The **REFLECTION** of the visceral pericardium to form the parietal pericardium

VISCERAL PERICARDIUM: is a thin layer that **directly covers the heart**

The image represents the heart, which maintains its visceral pericardium layer → the heart can be observed through this layer which, unlike the parietal pericardium, is a transparent layer

In fact, the visceral layer of the pericardium is part of the heart wall

It is the thin, tightly attached outermost layer of the heart ↓

also called **EPICARDIUM** = outermost layer of the heart
HEART WALL STRUCTURE (from outside to inside):

- **EPICARDIUM** ► the outermost layer (= visceral pericardium)
- **MYOCARDIUM** ► the main layer, it is the CARDIAC MUSCLE
- **ENDOCARDIUM** ► the innermost layer of tissue that lines the chambers of the heart
HEART: EXTERNAL EXAMINATION
EXTERNAL EXAMINATION OF THE HEART
with the the visceral pericardium layer

STERNOCOSTAL SURFACE

1. Superficial SUBDIVISION of the heart INTO THE 4 DIFFERENT CARDIAC CHAMBERS:
 - it is possible to identify, even on external examination, the grooves/depressions that separate the cardiac cavities
 - these grooves contain blood vessels (i.e., branches of the coronary arteries and veins) and adipose tissue
STERNOCOSTAL SURFACE

Identify:

- the atrioventricular sulcus (or coronary sulcus) → it separates atria from ventricles
- the anterior interventricular sulcus → it separates the right and left ventricles

There is also an interatrial sulcus, which however is of lesser importance as the two atria are actually separated by the great vessels
2. Identification of the RIGHT and LEFT ATRIA

3. Identification of the RIGHT and LEFT VENTRICLES, separated by the interventricular sulcus

4. Identification of the GREAT VESSELS on the superior side:
 - the **superior vena cava**, which opens into the right atrium
 - the two **great arteries** that originate from the ventricles
 - the **aorta** and the **pulmonary trunk**, which will divide into the right and left **pulmonary arteries**

Both ventricles are identifiable with their arteries, while the atria are partly hidden by the great arteries.
The aorta, which originates from the left ventricle, is located to the right of the pulmonary trunk, which is located to the left of the aorta.

THE RIGHT AND LEFT OUTFLOW TRACTS ARE CROSSING OVER

The right and left ventricle, when exiting and giving rise to the two arteries, cross each other.

The pulmonary trunk passes to the left of the aorta.

The pulmonary trunk and the aorta cross each other.
STERNOCOSTAL SURFACE

The right atrium presents a leaf-like portion which extends anteriorly towards the aorta origin

↓

AURICLE of the right atrium

On the left side there is a similar structure, narrower and S-shaped; it extends towards the pulmonary trunk

↓

AURICLE of the left atrium

The term auricle means “ear like” - because its shape resembles the external ear of a human
It is possible to identify:

- the right and left atria
- the right and left ventricles
- the atrioventricular or coronary sulcus
- the posterior interventricular sulcus

The superio ven a cava (above) and the inferior vena cava (below) open into the right atrium, as well as the coronary sinus, the vein that vasularizes the heart.

The 4 pulmonary veins, 2 on the right and 2 on the left, open into the left atrium.
HEART BASE

From this point of view, it is possible to observe that:

1. the right atrium has a different morphology with respect to the left atrium

 ▶ the RIGHT ATRIUM is more developed along the cranial-caudal axis, in the longitudinal direction

 ▶ the LEFT ATRIUM is more developed along the transverse axis, in the horizontal direction
HEART: EXTERNAL EXAMINATION

HEART BASE

From this point of view, it is possible to observe that:

2. The RIGHT ATRIUM is divided into 2 portions by a groove called sulcus terminalis cordis or terminal sulcus, which extends from the front of the superior vena cava to the front of the inferior vena cava.

The terminal sulcus marks the separation of the right atrium into:

- The SINUS OF VENAE CAVAE (sinus venarum): which is the portion of the right atrium placed between the two venæ cavæ. Its walls are extremely thin and smooth.

- the ATRIUM PROPER, which has rough/irregular walls formed by PECTINATE MUSCLES → It is also called the region of the right atrial pectinate muscles.

The atrium proper includes the auricle of the right atrium, which corresponds to the most anterior portion of the atrium.

The auricle is a relatively thin-walled structure that can fill with blood. This blood tends to stagnate and form clots which can detach and go into circulation, becoming emboli.
HEART BASE

From this point of view, it is possible to observe that:

3. the left atrium shows a more simple structure than the right atrium, with no internal subdivisions. It is possible to identify the left auricle with an S-shaped profile, which extends anteriorly.

Observing the base of the heart, it is also possible to recognize the reflection line of the visceral pericardium to form the parietal pericardium:

The visceral pericardium covers the entire cardiac surface, even posteriorly at the level of the atria, and then turns on itself to form the parietal layer of the pericardium.