
From Modelling to
Programming Languages

Paolo Baldan
Languages for Concurrency and Distribution

Down to earth
• What is a process?

• How do I specify its behaviour?

• Where are my processes executed?

• Is communication local or remote, synchronous
or asynchronous?

• What if a process fail?

• …

Concurrency vs. Parallelism
• Concurrency

Several independent cooperating/competing activities

• Logical (structuring principle)

• Intertwined with non-determinism

• Parallelism
Different activities executed simultaneously

• Operational

Parallelism everywhere
• Task level: Multimachine/Multiprocessor/Multicore

with shared or distributed memory

• Data level: Same operation on multiple
independent data (e.g., graphics on GPU)

• Instruction level: Pipelining, out of order execution
(x=1; z=3 --> z=3; x=1)

• Bit level: The longer is the word, the more data we
elaborate a the same time (8, 16, 32, 64 …)

More than exploiting
parallelism

• Concurrency is used for properly exploiting
parallelism but it is much more than this …

• Concurrency as a structuring concept

• When things are concurrent, they should be
modelled as such!

• Simplicity and Responsiveness as nice side
effects

More than exploiting
parallelism/2

• Distribution

• World is distributed

• SW must be distributed on different computers in different
physical locations …

• Distribution adds complications but helps in managing failures

• Resilience

• Concurrency and distribution enables resilient, fault tolerant
SW (independence of activities and fault detection managed
by separate entities)

How can we deal with it?
• Threads and locks

At some level, they will be there, but we prefer to keep them under the carpet

• Channel-based concurrency and Google Go
Emphasis on processes and channels as first class entities

• Actor model and Erlang
~ concurrent objects, communication via message passing (asynchronous),
support for distribution, resilience, fault tolerance

• The (non so-pure) functional way and Clojure  
Functional approach to concurrency with pragma (STM)

• Jolie and the orchestration of existing activities  
Structuring and interoperability

• Rust and ownership 
Explicit managing of memory property

