

Esercitazione n. 5 Titolo: CSWA Training A.A. 2021-22

Studente:			
COGNOME	NOME	Matr	
Compito:			

- a. To create drawing view 'B' it is necessary to sketch a spline (as shown) on drawing view 'A' and insert which SOLIDWORKS view type?
 - □ Section
 - ☐ Crop
 - Projected
 - □ Isometric

- b. To create drawing view 'B' it is necessary to sketch a spline (as shown) on drawing view 'A' and insert which SOLIDWORKS view type?
 - □ Aligned Section
 - Detail
 - Broken-out Section
 - □ Section

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI – D T G Laboratorio di Disegno e Metodi dell'Ingegneria Industriale

c. Model this part in SOLIDWORKS.

Unit system: MMGS (millimeter, gram, second)

Decimal places: 2 Part origin: Arbitrary

All holes through all unless shown otherwise.

Material: AISI 1020 Steel Density = 0.0079 g/mm³

A = 81.00 B = 57.00 C = 43.00

What is the overall mass of the part (grams)?

Hint: If you don't find an option within 1% of your answer please re-check your solid model.

1028.33

118.93

□ 577.64

939.54

REMINDER: Save your part in a different file after each question in case it must be reviewed.

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI – D T G Laboratorio di Disegno e Metodi dell'Ingegneria Industriale

d. Modify the part in SOLIDWORKS.

Unit system: MMGS (millimeter, gram, second)

Decimal places: 2 Part origin: Arbitrary

All holes through all unless shown otherwise.

Material: AISI 1020 Steel Density = 0.0079 g/mm³

Use the part created in the previous question and modify it by changing the following parameters:

A = 84.00

B = 59.00

C = 45.00

Note: Assume all other dimensions are the same as in the previous question.

What is the overall mass of the part (grams)?

e. Modify the part in SOLIDWORKS.

Unit system: MMGS (millimeter, gram, second)

Decimal places: 2 Part origin: Arbitrary

All holes through all unless shown otherwise.

Material: AISI 1020 Steel Density = 0.0079 g/mm³

Use the part created in the previous question and modify it by removing material and also by changing the following parameters:

A = 86.00

B = 58.00

C = 44.00

What is the overall mass of the part (grams)?

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI – D T G Laboratorio di Disegno e Metodi dell'Ingegneria Industriale

f. Modify the part in SOLIDWORKS.

Unit system: MMGS (millimeter, gram, second)

Decimal places: 2 Part origin: Arbitrary

All holes through all unless shown otherwise.

Material: AISI 1020 Steel Density = 0.0079 g/mm³

Use the part created in the previous question and modify it by adding a pocket.

Note 1: Only one pocket on one side is to be added. This modified part is not symmetrical. Note 2: Assume all unspecified dimensions are the same as in the previous question #5.

What is the overall mass of the part (grams)?

g. Model this assembly in SOLIDWORKS (Chain Link Assembly)

Download the attached zip file and open it.

Save the contained parts and open those parts in SOLIDWORKS.

Note: If SOLIDWORKS prompts "Do you want to proceed with feature recognition?" please click "No".

IMPORTANT: Create the Assembly with respect to the Origin as shown in isometric view. (*This is important for calculating the proper Center of Mass*)

Create the assembly using the following conditions:

- 1. Pins are mated concentric to chain link holes (no clearance).
- 2. Pin end faces are coincident to chain link side faces.

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI – D T G Laboratorio di Disegno e Metodi dell'Ingegneria Industriale

	Unit system: MMGS (millimeter, gram, second) Decimal places: 2 Assembly origin: As shown in image
	A = 25 degrees B = 125 degrees C = 130 degrees
	What is the center of mass of the assembly (millimeters)? Hint: If you don't find an option within 1% of your answer please re-check your assembly.
	 X = 348.66, Y = -88.48, Z = -91.40 X = 308.53, Y = -109.89, Z = -61.40 X = 298.66, Y = -17.48, Z = -89.22 X = 448.66, Y = -208.48, Z = -34.64
h.	Modify the assembly in SOLIDWORKS. (Chain Link Assembly)
	Unit system: MMGS (millimeter, gram, second) Decimal places: 2 Assembly origin: Arbitrary Using the same assembly created in the previous question modify the following parameters:
	A = 30 degrees B = 115 degrees C = 135 degrees
	What is the center of mass of the assembly (millimeters)?