<u>COMPUTABILITY</u> (13/01/2024)

hemce by Rice-Shapizo Bf is not ze.

(2.b)
$$f$$
 is not finite
we have $f \in Bf$ and for any $\partial \subseteq f$, ∂ finite $9 \neq f$
hence $\partial \notin Bf$. Hemce, by Rice-Shapizo, Bf is not ze.

 \mathcal{B}^{t}

*
$$B_f$$

* $f = \varphi$ ($f(x)$) $\forall x$) $\sim B_f$ is e.
 $e \in B_f$ iff there is some x such that $\varphi_e(x)$ if
some x , t such that $H(e, x, t)$

hence
$$SC_{\overline{B_{f}}}(e) = \Im(\mu(x,t), H(e,x,t))$$

= $\Im(\mu\omega, H(e,(\omega)_{4},(\omega)_{2}))$
= $\Im(\mu\omega, |\mathcal{X}_{H}(e,(\omega)_{4},(\omega)_{2}) - 1))$

computable.

Thus By R.E. Not recursive since By not re. (hence not recursive)

*
$$f \neq \phi$$

Bf is not ze.
 $f \notin B_{f}$ and $\partial = \phi \leq f$ finite and $\phi \in B_{f}$
hence by Rice-shapizo, Bf is not ze. (hence not securisive)

EXERCISE: show that
$$gcd: IN^2 \rightarrow IN$$
 is PR
 $gcd(x,y) = greatest$ common divisor of x and y

$$gcd(z,y) = mox z$$
. $z divisor of z$ and $z divisor of y$
 \bigwedge
 $mim(z,y)$
 $cm(z,z) = 0$
 $em(z,y) = 0$

= mox $z \leq mim(x,y)$. (zm(z,x) + zm(z,y) = 0)

$$z = min(x;y)$$

$$z = min(x;y) - (\mu \omega \le min(x;y). \quad (z = min(x;y) - \omega = and))$$

$$gcd(x;y) = min(x;y) - (\mu \omega \le min(x;y). \quad (z = min(x;y) - \omega = and))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((min(x;y) = \omega) + em((min(x;y) = \omega)))$$

$$= min(x;y) = (\mu \omega \le min(x;y). \quad em((\pi \omega = \omega)) = (\mu \omega \le min(x;y))$$

EXERCISE show there are $m_i m \in \mathbb{N}$ s.t. (i) $q_m = q_{m+1}$ (ii) $q_m \neq q_{m+1}$ (i) observe that suce: $\mathbb{N} \to \mathbb{N}$ suce (m) = m+1 is taken ond computable. Hence by the II eccursion theorem, there is m s.t. $q_m = q_{succ}(m) = q_{m+1}$

(iii) if it were that $\forall m = q_{m+1}$, inductively you would have $q_2 = q_1 = q_2 - - , \quad \forall m m \quad q_m = q_m$ which is folse (e.g. $\exists ucc \neq id$). EXERCISE : Define BR. Using only the definition show that $mox_2 : \mathbb{N} \rightarrow \mathbb{N}$ IS IN PR $max_2(x) = max d 2, x \}$ (1) Rebuild mox sum x+y x+0 = xx+ (y+1) = (x+y) +1 predicessor y=1 0-1 =0 (y+1) - 1 = ydifference z=y x = 0 = xx = (y + 1) = (x - y) = 1 $mox \quad mox (x,y) = x + (y - x)$ $m_{2}(x) = m_{2}(z, z) = m_{2}(suc(suc(0)), z)$ (2) Proceed "on demand" $m_{0X_{2}}(0) = 2$ $mox_{2}(y+1) = \begin{cases} 2 & 1 \\ y+1 & if y=0 \\ y+1 & if y>0 \end{cases} = y+1 + \overline{sg}(y)$ mox(1,y)sum as above $\overline{SQ}(0) = 1$ $\overline{SQ}(1+1) = 0$

even shorter

$$\begin{cases} mox_{2}(0) = 2 \\ mox_{2}(y+1) = \begin{cases} 2^{-1}y+1 & \text{if } y=0 \\ y+1 & \text{if } y>0 \end{cases} = \frac{mox(1,y) + 1}{mox(1,y)}$$

$$\begin{cases} uvox^{T}(0) = T \\ uvox^{T}(0) = T \end{cases}$$

EXERCISE :

Say
$$f: |N \rightarrow |N|$$
 is mometome if f is total
 $\forall x_i y \neq x \leq y$ thus $f(x) \leq f(y)$

Consider

$$\forall x. \quad \text{if } q_x \text{ is total them}$$

$$q(x) = \sum_{\substack{y \leq x}} f(y) \geqslant f(x) = q_x(x) + 1 \neq q_x(x)$$

hence g total and different from all total computable functions, hence not computable.

- g is momotome
if
$$z \leq y$$
 then
 $g(z) = \sum_{z \leq z} f(z) \leq \sum_{z \leq z} f(z) + \sum_{z < z \leq y} f(z)$
 $= \sum_{z \leq y} f(z) = g(y)$

* Alternative solution

$$q(x) = \begin{cases} x+1 & \text{if } \varphi_x(x) \downarrow \text{ and } \varphi_x(x) \neq x+1 \\ x & \text{if } (\varphi_x(x) \downarrow \text{ and } \varphi_x(x) = x+1) \\ 0 & \text{or } \varphi_x(x) \uparrow \end{pmatrix}$$

- g is total
- g is not computable
(botal and different from all total computable fermiction
in fact, if
$$x \in \mathbb{N}$$
 s.t. φ_x is total
- if $\varphi_x(x) = x + 1$ Hum $g(x) = x + \varphi_x(x)$
- if $\varphi_x(x) \neq x + 1$ Hum $g(x) = x + 1 \neq \varphi_x(x)$)

-
$$g$$
 is monotome
 $\forall z, y s, t. z < y$ then
 $g(z) \leq z + 1 \leq y \leq g(y)$

Even simpler

$$g(x) = \begin{cases} x+4 & \text{if } q_{X}(x) \downarrow \\ x & \text{otherwise} \end{cases}$$

$$-g \text{ total}$$

$$-g \text{ moteompetable}$$

$$im \text{ fact} \qquad \mathcal{X}_{K}(x) = g(x) \div x = \begin{cases} 1 & \text{if } q_{X}(x) \downarrow \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{hence} g \text{ is not computable} & \text{otherwise} & \mathcal{X}_{K} \ \text{would be computable}.$$

$$\underbrace{\mathsf{Exercise}} : \text{ show that there is } x \in \mathbb{N} \quad \text{s.t.} \quad q_{X}(y) = x \div y$$

$$\operatorname{Define} \qquad g(x,y) = x \div y \qquad \text{computable} \\ \operatorname{hunce} by \ \text{smm} \ \text{there is } s : \mathbb{N} \rightarrow \mathbb{N} \quad \text{total computable} \quad \text{s.t.} \quad \forall x_{X}y \\ q_{S(x)}(y) = g(x,y) = x \div y$$

$$\operatorname{By} \ \text{second secursion in theorem there is } x \in \mathbb{N} \quad \text{s.t.} \quad q_{x} = q_{S(x_{0})}$$

hemce

$$\varphi_{x_{0}}(y) = \varphi_{s(x_{0})}(y) = \varphi(x_{0}, y) = x_{0} - y$$

٠