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PRIMING MODIFIES RESPONSES TO A TRIGGERED STRESS
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Plants need to cope with
changing environmental
conditions, be it variable light
or temperature, different
availability of water or
nutrients, or attack by
pathogens or insects.

Plants have evolved
mechanisms by which they can
remember past stress events
and prime their responses in
order to react more rapidly or
more strongly to recurrent
stress.

EDITORIAL WILEY

Stress priming, memory, and signalling in plants
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Epigenetic control systems offer an alternative mechanism for
responses that are dynamic and persistent: a gene, or a network, is
activated in response to a stimulus, but once the stimulus is
removed, a mark could be left to facilitate altered, quicker or more
potent responses to subsequent stresses.

‘transcriptional memory’ to mean that a type of information persists
after the plant has recovered from the initial stress and that the
‘memory’ influences subsequent transcriptional responses.
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Photosynthetic and metabolic acclimation to repeated
drought events play key roles in drought tolerance in coffee

Paulo E. Menezes-Silva'?, Lilian M. V. P. Sanglard’, Rodrigo T. Avila', Leandro E. Morais'?, A

Samuel C. V. Martins', Priscilla Nobres®, Camila M. Patreze®, Marcio A. Ferreira*, Wagner L. Araujo®,
Alisdair R. Fernie’ and Fabio M. DaMatta'*

Acclimation to repeated drought episodes seemed to
depend on an orchestrated reprogramming of plant
metabolism, involving key processes such as
photosynthesis, respiration, photorespiration, and the
antioxidant system. In addition, the exposure to
recurrent stress events also resulted in differential
molecular adjustments, as noted in the gPCR data,
suggesting the existence of so-called trainable genes in
coffee. It is therefore tempting to suggest that the
differential acclimation observed in D3 plants might be
the results of the generation of a ‘drought memory’
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What are trainable genes?




Transcriptional memory and its adaptive potential

Received 27 Oct 2011 | Accepted 6 Feb 2012 | Published 13 Mar 2012

Multiple exposures to drought ‘train’
transcriptional responses in Arabidopsis

Example: Response to recurrent dehydration StreSS Yong Ding!, Michael Fromm?2 & Zoya Avramova'

Previous exposure to a stress may alter a plant’s subsequent
stress response by producing faster and/or stronger reactions
that may provide the benefits of enhanced protection
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How do plants exercise a form of ‘stress memory’?



Response to dehydration stress of trained or non-trained plants.
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a Non-trained Trained

Appearance of 3-week-old
Arabidopsis plants to 1-h exposure to
air if not previously stressed (non-
trained) or previously stressed with
three consecutive cycles of .
stress/recovery treatments (trained). pingetal, 2012

Non-trained plants wilted faster than trained plants




Response to dehydration stress of trained or non-trained plants.
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Non-trained leaves lost water at
a faster rate than trained plants
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Genes widely used as markers for dehydration-inducible genes

RD29: responsive to desiccation

The homologous RD29A and RD29B genes are
exquisitely sensitive to various abiotic stressors.
Therefore, RD29A and RD29B gene sequences have
potential to confer abiotic stress resistance in crop
species grown in arid and semi-arid regions.
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COR15A:

A cold-regulated gene whose product is targeted
to the chloroplast. COR15A protects stromal
proteins from aggregation under various
stress conditions. Constitutive expression
Increases freezing tolerance in protoplasts in
vitro and chloroplasts in vivo.

Dehydrin
rab-related (responsive to ABA) gene, rab18



Abstract Abiotic stresses have adverse effects on plant
growth and productivity. The homologous RD29A and
RD29B genes are exquisitely sensitive to various abiotic
stressors. Therefore, RD29A and RD29B gene sequences
have potential to confer abiotic stress resistance in crop
species grown in arid and semi-arid regions. To our
knowledge, no information on the physiological roles of
the proteins encoded by RD29A and RD29B are available
in the literature. To understand how these proteins func-
tion, we used reverse genetic approaches, including iden-
tifying rd29a and rd29b T-DNA knockout mutants, and
examining the effects of complementing transgenes with
the genes under control of their native promoters and chi-
meric genes with the native promoters swapped. Four
binary vectors with the RD29A and RD29B promoters
upstream of the cognate RD29A and RD29B ¢cDNAs and as
chimeric genes with noncognate promoters were used to
transtorm rd29a and rd29b plants. Cold, drought, and salt
induced both genes; the promoter of RD29A was found to
be more responsive to drought and cold stresses, whereas
the promoter of RD29B was highly responsive to salt stress.
Morphological and physiological responses of rd29a and
rd29b plants to salt stress were further mvestigated. Root
growth, and photosynthetic properties declined signifi-
cantly, while solute concentration (‘Y'm), water use effi-
ciency (WUE) and 6"°C ratio increased under salt stress.
Unexpectedly, the rd29a and rd29b knockout mutant lines

Planta (2011) 234:97-107
DOI 10.1007/500425-011-1387-y

ORIGINAL ARTICLE

Characterization of abiotic stress-responsive Arabidopsis thaliana

RD29A and RD29B genes and evaluation of transgenes

Joseph Msanne - Jiusheng Lin - Julie M. Stone -
Tala Awada

maintained greater root growth, photosynthesis, and WUE
under salt stress relative to control. We conclude that the
RD29A and RD29B proteins are unlikely to serve directly
as protective molecules.



Transcript levels of non-trainable and trainable genes

Transcript levels of non-trainable and trainable genes in plants before and after single or multiple dehydration stresses.

Genes widely used as markers for dehydration-inducible genes
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Transcript levels of non-trainable and trainable genes

Transcript levels of non-trainable and trainable genes in plants before and after single or multiple dehydration stresses.

Genes widely used as markers for dehydration-inducible genes
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Transcript levels of non-trainable and trainable genes

Transcript levels of non-trainable and trainable genes in plants before and after single or multiple dehydration stresses.

Genes widely used as markers for dehydration-inducible genes
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Transcript levels of non-trainable and trainable genes

Transcript levels of non-trainable and trainable genes in plants before and after single or multiple dehydration stresses.

Genes widely used as markers for dehydration-inducible genes
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Figure 3 | Nuclear run on assays of non-trained or trained plants. Nuclei
were isolated from non-stressed watered (W), singly (51) or repetitively
stressed plants. The repetitively stressed plants were dehydration stressed
3 times and then nuclei isolated before (recovery R3) or during a fourth
dehydration stress (54). Isolated nuclei were used in run on transcription
reactions containing biotin-UTP to label newly synthesized transcripts. The
nascent biotin-labelled transcripts were purified by binding to streptavidin
beads and quantitated by quantitative PCR (gPCR) for (a) RD29A;

(b) CORI5A; (c) RD29B; (d) RABI8 genes. Labelling experiments were
repeated at three times, each with three reverse transcription-gPCR
measurements, and the representative experiment shown indicates the
mean +s.e.m., n =3 replicates. UBQ10 was used as internal control.

Transcription rates
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RNA Pol Il and the chromatin histone H3K4me3 modification
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Active transcription elongation is associated with high Ser2P levels accumulating towards the
3’-ends of actively transcribed genes.

In agreement, the Ser2P distribution profiles showed a peak towards the 3’-ends of both the
non-trainable and the trainable genes when induced by stress
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REVIEW

Phosphorylation and functions
of the RNA polymerase II CTD

Hemali P. Phatnani' and Arno L. Greenleaf®

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA

Ser2,5P (& ...)

SersP (& ...) SerZP (&...)

nonP

CTDK-]
—_—T

[PTEFB)

pre- irutiatirg elarngaling terminating
witiating RNAP RNAFI RNAPH

17



As the operational definition of memory marks is that they
must last longer than the stimulus, we conclude that
Ser2P does not function as a memory mark.




How can you analyse these specific subset of transcripts?
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REVIEW

Phosphorylation and functions
of the RNA polymerase II CTD

Hemali P. Phatnani' and Arno L. Greenleaf®

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
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RNA Pol Il and the chromatin histone H3K4me3 modification

Pol Il has consensus repeats (Y,S,P3T,S:PS-);, at its C-terminal Domain (CTD)

Checkpoint/Capping
Chromosomal Passenger Complex (CPC)
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Ser5P Pol Il = initiation

Ser2P Pol Il = elongation

Post-translational modifications of the CPC are very important for the
transcription, and interact with chromatin changes
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RNA Pol Il and the chromatin histone H3K4me3 modification

CTD heptad repeats splicing . checkpoint
YSPTSPS checkpoint satisfied
RNAPII paused

CTD pSerS pSer5

RNA splicing
Ser5P Pol Il = initiation
Ser2P Pol Il = elongation

Post-translational modifications of the CPC are very important for the
transcription, and interact with chromatin changes
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RNA Pol Il and the chromatin histone H3K4me3 modification
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For the trainable genes, the Ser5P patterns were higher for the repetitively stressed (S4) than
for singly stressed (S1) plants, consistent with their transcript levels.
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RNA Pol Il and the chromatin histone H3K4me3 modification
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RNA Pol Il and the chromatin histone H3K4me3 modification

Transcription is "pre-launched" at the locus of stress
genes to acquire memory

active mechanism (maintenance)?

passive mechanism (no resetting)?



Priming mechanisms allow plants to respond more effectively to
recurrent stress.

These mechanisms are closely linked to transcriptional memory.

Examples of trans-generational effects of stress exist but are rare.

Systematic studies, robust, and people are now essential.



can lead to trans-generational effects? and adaptive?

v : : .
Stress —— Epigenetic modifications

2
Epigenetic modifications — Inheritable phenotype
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can lead to trans-generational effects? and adaptive?

DDM1 = Deficient in DNA methylation 1 is an
ATP-dependent DNA helicase

- &9

DNA methyltransferases

DNA methyltransferases

DDM1 encodes an ATPase chromatin remodeler
that is primarily involved in the maintenance of
DNA methylation and silencing of repeat
elements

The epiRILs show that epigenetic changes can
lead to stable and heritable phenotypes in
plants.
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Larger phenotypic variation
was observed among the Col-
wt epiRILs, than among the
Col-wt or Col-ddm1 parental
lines.

Increased phenotypic
variation of this kind is
indicative of a component of
segregational variance that
typically arises in the
construction of Recombinant
Inbred Lines obtained from
parents that differ by
numerous DNA sequence

polymorphisms.
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Hyperosmotic priming

Sani et ol. Genome Biology 2013, 14R59

http:/genomebiology.com/201 3/14/6/R59 Gen ome Biology

Also hyperosmotic stress induce an
Hyperosmotic priming of Arabidopsis seedlings ad aptatlve response (I ntra_generatlonal)

establishes a long-term somatic memory
accompanied by specific changes of the

epigenome
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can lead to trans-generational effects? and adaptive?

v : : .
Stress —— Epigenetic modifications

v
Epigenetic modifications — Inheritable phenotype



can lead to trans-generational effects? and adaptive?

v : : L
Stress —— Epigenetic modifications
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Epigenetic modifications — Inheritable phenotype
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Epigenetic variation contributes to environmental adaptation
of Arabidopsis thaliana

Rik Kooke'*? and Joost ] B Keurentjes'>"
lLaborator}' of Genetics; Wageningen University; Wageningen, The Netherlands; 2L;L]:-::u'ator}f of Plant Physiology; Wageningen University; Wageningen,
The Netherlands; *Centre for Biosystems Genomics; Wageningen, The Netherlands

The Plant Cell, Viel. 27: 337-348, February 201 5, www . plantcell.org @ 2015 American Society of Plant Biclogists. All rights reserved.

Epigenetic Basis of Morphological Variation and Phenotypic
Plasticity in Arabidopsis thaliana

Rik Kooke,2&¢ Frank Johannes,! René Wardenaar,® Frank Becker,® Mathilde Etcheverry,® Vincent Colot,®
Dick Vreugdenhil,®< and Joost J.B. Keurentjes2.c1
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