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Microorganisms are indisputably important for ecosystem 
health. From the wealth of research on microbial commu-
nities (that is, microbiomes) associated with soil, plants 

and animals, a spectrum of microbe-driven impacts on ecosystem 
function has emerged1–3. Microorganisms not only form special-
ized relationships with their hosts, but are also responsible for driv-
ing global patterns in carbon and nitrogen cycling2,4. For example, 
extreme dependence on microorganisms for nutritional require-
ments has repeatedly evolved in plants and animals5,6, enabling host 
organisms to live in habitats they would otherwise be excluded from. 
Microorganisms constitute more than 15% of the Earth’s biomass7 
and are responsible for driving many ecological processes, includ-
ing biogeochemical cycles and nutrient acquisition by plants2,4,8–10. It 
is therefore widely recognized that microorganisms are interwoven 
into the many layers of natural and managed ecosystem functioning.

For decades, researchers have made considerable efforts to char-
acterize the microbial communities critical for ecosystem health. 
Exponential growth in microbiome research has led to publication 
of several extensive reviews detailing the complex communities 
and many roles of microorganisms associated with soil, plants and 
insects (for example, refs. 8,11–13). However, the current wave of inter-
est in understanding how microbiomes impact the ecosystem has 
involved a substantial shift away from primarily cataloguing micro-
bial diversity in different environments. Research efforts now aim 
to uncover the forces shaping microbiome structure and function, 
measure heritability of microbiome-derived host phenotypes and 
determine what processes govern microbiome stability and resil-
ience to disturbance14–16.

Agroecosystems—ecosystems involving interactions between 
cultivated fields and surrounding natural areas—have become a 
hotspot for research focused on harnessing the beneficial proper-
ties of microbiomes for improved crop health and protection from 
stress15–18. Throughout the history of agriculture, humans have 
employed planting strategies that avoid build-up of soil-borne 
pathogens and intentionally used microorganisms to fight agricul-
tural pests14. Yet, microbial communities associated with soil, plants 

and insects are traditionally studied as distinct sectors, with lim-
ited cross-talk between disciplines. Recent research highlights the  
interconnected nature of microbiomes, particularly those asso-
ciated with plants, soil, insect herbivores and pollinators3,17,19–21  
(Fig. 1). As appreciation for the complexity and interconnected 
nature of crop-associated microbiota grows, there is a clear need 
to unify our understanding of the processes driving microbiome 
assembly and function. Integrating knowledge across the overlap-
ping sectors of crop microbiomes (that is, soil, plants and insects) 
has important implications for agroecosystem health and long-term 
sustainability, including establishing best management practices 
and advancing microbiome-based technology.

The current boom in microbiome research has reinvigorated 
interest in developing novel microbial biotechnology, but aside 
from a few successful cases (noted below) we have yet to capital-
ize on microbiome-centred approaches for improving crop health 
and agroecosystem sustainability. High-throughput sequencing 
and phenotyping capabilities now enable investigation of entire 
microbial communities and simultaneous screening of thousands 
of microorganisms for beneficial properties, which has spurred 
rapid growth of the microbial biotechnology sector22. The market 
value of biostimulants and biocontrol agents is projected to reach 
over US$14 billion by 2023 (http://go.nature.com/2MyMdmh), but 
some products have garnered a ‘snake oil’ reputation, highlighting 
a need for improved testing and transparency in product develop-
ment. In addition, we still lack guidelines for intentionally manag-
ing the interacting domains of agricultural microbiomes to improve 
crop performance and protection from stress. Numerous recent 
reviews suggest approaches for managing agricultural microbiomes 
(for example, refs. 15,23), but without a comprehensive understand-
ing of how traditional practices drive changes in all domains of 
crop-associated microbial communities (Fig. 1), progress will be 
slow. Crop protection problems in different agricultural systems 
will also require unique solutions, yet it is currently unclear how 
management of agricultural microbiomes should be tailored to 
meet a spectrum of needs.
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This Review brings together knowledge of current practices and 
limitations in managing soil-, plant- and insect-associated micro-
biomes (the phytobiome1) and outlines next steps for advancing 
microbiome-informed management across diverse agricultural 
systems. We synthesize the unintentional and intentional strategies 
used for microbiome manipulation and organize historical progress 
into ‘generations’ of agricultural microbiome research that reflect 
milestones in knowledge, approaches and technology. Finally, we 
conclude with discussion of fundamental knowledge gaps and 
emerging strategies for the future of precision microbiome manage-
ment that are tailored, predictive and integrative.

Impacts of management practices on agricultural 
microbiomes
Understanding the unintentional consequences of agricultural prac-
tices on crop microbiomes has important implications for steering 
microbial communities to produce intended beneficial effects and 
identifying changes contributing to poor crop health. Agricultural 
research has a lengthy history of investigating how management 
practices impact soil microbiomes and crop productivity, with 
recent work focusing on plant-associated microbial communities 
(see refs. 24–29), however a comprehensive overview of the range of 
effects across all domains of crop microbiomes is lacking. In addi-
tion, a disproportionate amount of research focuses on below-
ground sectors of crop microbiomes (soil and root-associated). Far 
less is known about how management practices shape microbial 
communities associated with aboveground plant tissues (leaves and 
flowers) and agriculturally relevant insects. Here we present an inte-
grated view of common themes emerging from decades of research 
investigating how key management practices alter crop microbi-
ome composition and function (Table 1). We also highlight critical 
knowledge gaps and areas for further research.

Agricultural practices can disrupt healthy or native microbiomes. 
Agricultural practices are often disruptive for microbial community 
dynamics because they can alter microbe–microbe interactions and 
shift the abundance of beneficial (for example, nitrogen fixing or 
detoxifying) and pathogenic microorganisms predicted to impact 

plant health. Chemical inputs and intensification of land use have 
caused extensively documented negative impacts on crop micro-
biome structure and function24–26,30,31. Although not an agricultural 
practice, the process of crop domestication also has well-established 
negative consequences for plant–microbe interactions32. In general, 
three major effects considered harmful to crop-associated microbial 
communities have been observed: (1) reduced microbial diversity 
or overall biomass, (2) altered or impaired microbiome function-
ing, and (3) disruption of beneficial relationships between plant or 
insect hosts and symbiotic microorganisms.

Although the effects of agricultural practices vary across specific 
groups of microorganisms, lower overall biomass, species rich-
ness and taxonomic diversity are broadly observed in microbiomes 
associated with repeated use of chemicals to control pests or patho-
gens24,25,33, and in systems dominated by monocultures of one or a 
few crop species26,27 or increased soil disturbance resulting from till-
age31,34. For example, a recent meta-analysis found that conventional 
tillage reduced soil microbial biomass by more than 30% relative 
to reduced-till or no-till practices31. Soil and foliar pesticide appli-
cations can also directly reduce microbial diversity and biomass 
within crop microbiomes, in some cases decreasing the presence of 
beneficial microorganisms and causing increases in pathogens24,25,33. 
Furthermore, a recent study found that glyphosate-based herbicide 
effects can extend beyond soil and phyllosphere communities by 
affecting relative abundances of gut microbiota in non-target insects 
that feed on treated plants35. However, in many cases it remains 
unclear whether shifts in microbial diversity and biomass translate 
to detectable effects on microbiome function. Although the current 
dogma seems to be that higher taxonomic diversity is beneficial, 
the extent to which loss of diversity ultimately impacts crop health 
remains an open question.

On a functional level, various pesticides and some synthetic 
fertilizers are linked to disruption of soil-nitrifying microbial 
communities and overall lower metabolic activity24,25,36. A recent 
meta-analysis found that most fungicides broadly inhibit soil micro-
bial growth, reducing microbial biomass by over 50% on average, but 
variable effects were observed for respiration and nitrogen cycling33, 
which suggests that predicting the effects of management practices 
on microbiome function will not be straightforward. However, one 
consistent effect of extensive agrochemical use is enrichment of 
taxa within microbial communities capable of metabolizing such 
chemicals. It has long been known that agricultural soils often 
show higher levels of microbial biodegradation of pesticides37,38. 
Unsurprisingly, enrichment of pesticide-degrading microorganisms 
in agricultural soils also increases the risk of resistance developing 
in insect pest populations, particularly for root feeders and species 
with soil-dwelling developmental stages (see refs. 39,40). One of the 
most striking examples of direct microbial detoxification conferring 
insecticide resistance involves beanbugs and the soil-borne bacte-
rium Burkholderia39. Repeated insecticide exposure can also rapidly 
shift the composition of microbial communities associated with 
insect pests41, ultimately enriching for insecticide degraders and 
reducing taxa that enhance susceptibility40,42,43.

Finally, there is growing concern that agricultural practices 
impair recruitment of beneficial microorganisms mediating impor-
tant aspects of crop health and agroecosystem functioning18,44. The 
ability of modern crops to sustain relationships or interact with 
mycorrhizal fungi and plant-growth-promoting rhizobacteria 
can become compromised during domestication27. For example, 
a comparison of 199 wheat genotypes found root colonization by 
a beneficial strain of plant-growth-promoting rhizobacteria was 
substantially higher in ancient genotypes than in modern breed-
ing lines45. In addition to domestication, management practices 
may also alter beneficial crop–microbe interactions. A recent 
meta-analysis found greater soil disturbance resulting from  
tillage practices reduces root colonization by beneficial arbuscular  
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Fig. 1 | the major sectors of crop-associated microbial communities 
(soil, plant and insect) are shaped by key agricultural practices.  Arrows 
highlight how soil, plant and insect microbiomes interact to influence crop 
health, and show how each is affected by the listed management practices. 
See Table 1 for summary and descriptions of management practices.
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mycorrhizal fungi (AMF) by approximately 30% (ref. 44). 
Agrochemical applications, including fungicides and chemi-
cal soil disinfection used to suppress microbial pathogens, can 
also unintentionally weaken plant health by disrupting natural 
pathogen suppression by microbial competitors, altering nutri-
ent cycling or decomposition processes46–48, and may even impact 
pollination services through effects on floral microbiomes49. In 
fact, studies show pesticides can inhibit or reduce naturally occur-
ring and commercially used biocontrol microorganisms50,51, which 
in turn is problematic for pest management52. In addition, pesti-
cide use is predicted to compromise critical relationships between  

microorganisms and beneficial insects, including pollinators53 and 
natural enemies used to suppress pest populations54. Common pes-
ticides not only alter microbial communities associated with pol-
linators53,55, but are also linked to major colony declines in bumble 
bees56,57 and increased disease incidence in honey bees58, indicating 
that pesticide-mediated disruptions to microbiota could have wide-
spread effects on beneficial insects.

Ecology-guided management supports healthy crop microbi-
omes. Thus far, management practices that integrate ecological 
principles to increase or preserve biological diversity have tended 

Table 1 | summary of positive and negative effects of key management practices on crop microbiomes

Agricultural 
practice

Description Effects on crop microbiomes references

Chemical 
control

Application of chemicals to control pests 
(for example, chewing and sap-sucking 
insects) and pathogens (for example, harmful 
viruses, bacteria and fungi) alter microbial 
community dynamics through direct toxicity 
and by acting as an energy or nutrient 
resource. Agrochemicals include herbicides, 
insecticides, fungicides, nematicides and soil 
fumigants.

↓ Microbial diversity
↑ Microbial activity
↑ Or ↓ pathogen suppression
Disrupts relationships with beneficial microbes
Linked to microbe-mediated insecticide resistance
Altered microbial functioning

Soil and rhizosphere24a,25a,28,33a,69a

Pest insects40–43

Beneficial insects53–56

Crop 
diversification

Diversification strategies that grow two or 
more crops in the same location are often 
designed to improve pest suppression and 
soil fertility and are thus predicted to alter 
microbial processes linked to nutrient  
cycling and pathogen build-up. Practices 
include crop rotation, cover cropping  
and intercropping.

↑ Or ↓ microbial diversity
↑ Soil fertility
↑ Disease insect pest suppression
↑ Beneficial microbe–plant interactions

Soil and rhizosphere26a,27a,30,63–65,68

Fertilizer 
inputs

Chemical fertilizers (nitrogen, phosphorus 
and potassium) enhance crop yield but also 
alter soil properties (for example, pH) and 
plant physiology (for example, root exudate 
production) in ways that are predicted to 
impact the structure and functional diversity 
of crop-associated microbiomes.

↓ Microbial diversity; varies (for example,  
soil- versus root-associated)
↑ Soil acidification negatively impacts microbial 
growth
↑ Overall microbial biomass; depends on rate and 
amount
↑ Abundance of plant-growth-promoting bacteria
↓ Microbial benefits to plant growth with excessive 
nutrients (for example, N, P and K)

Soil and rhizosphere29a,170–175

Organic soil 
amendments

Addition of organic matter contributes to 
soil fertility by enhancing water and nutrient 
availability to crops, counteracting soil 
erosion and modulating soil temperature and 
pH, which in turn are predicted to reshape 
microbial community structure and function. 
Examples include compost, manure, biosolids, 
biochar and plant material residues.

↑ Microbial diversity, abundance and metabolic 
activity
↑ Suppression of soil-borne pathogens
↑ Positive plant–soil feedback (for example,  
in maintaining soil structure)

Soil and rhizosphere29a,59,61,67,68,168,169

Tillage Tillage practices mechanically turn soil as a 
way to control weeds and pests. However, 
tillage ultimately causes physical disturbance 
that leads to changes in soil physiochemical 
properties and erosion, which in turn are 
predicted to affect soil microbial communities 
on many levels.

↓ Microbial diversity and overall biomass
↓ Microbial functional diversity (for example, 
catabolic diversity)
Disrupts relationships with beneficial 
microorganisms

Soil and rhizosphere31a,34,44a,60,176,177

Water 
management

Water can strongly influence soil 
microorganisms directly or through effects on 
soil structure and physiochemical properties 
such as pH. Management of soil moisture 
through irrigation practices is therefore 
predicted to influence soil and rhizosphere 
microbiome communities.

↓ Associations with beneficial root  
microorganisms
↓ Presence of water-stress-tolerant  
microorganisms
↑ Multidrug-resistant bacteria in soil (for example, 
wastewater irrigation)
↑ Microbial activity

Soil and rhizosphere178–181

aIndicates review or meta-analysis. Up and down arrows indicate increasing and decreasing effects, respectively.
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to improve soil quality and ultimately support functionally diverse 
crop microbiomes (Table 1). Approaches that increase crop diversity, 
increase available soil nutrients or generally minimize environmen-
tal disturbance have been shown to promote diverse crop-associated 
microbial communities26,27,30,31,59,60 that in turn are predicted to ben-
efit plant health through mechanisms such as disease suppression 
and maintenance of essential symbiotic relationships. However, 
aside from larger-scale systems (for example, maize, wheat or tree 
crops) the potential benefits of ecology-guided management prac-
tices for crop microbiomes are not well understood in emerging 
areas such as urban farming, aquaponics and controlled environ-
ments. Furthermore, there is a general lack of information on how 
management practices could be leveraged to improve protection 
of pollinators and natural enemies via effects on insect-associated 
microbiota.

Agricultural practices that promote crop diversity (for example, 
rotations or intercropping) and the use of organic soil amend-
ments (for example, manure or compost) have the most notable 
benefits for mediating crop health via effects on microbial com-
munities26,59,61. Several recent meta-analyses report increases in soil 
microbial diversity and richness ranging from 3% to 27% when 
cover cropping or crop rotations are implemented relative to mono-
culture or soils with less agricultural diversity26,27. Using a combi-
nation of metagenomic and metatranscriptomic analysis in peanut 
roots, a recent study found that the benefits of increasing crop 
diversity extend beyond enhanced rhizosphere microbial diversity 
to reprogramming of key hormonal pathways regulating growth62. 
Practices that foster crop diversity may also promote microbial col-
onization of roots by AMF, which can provide a range of benefits to 
their hosts, including increased nutrient acquisition and stress resis-
tance44. A meta-analysis of 54 field studies worldwide found that 
cover cropping enhanced subsequent AMF colonization of summer 
cash-crop roots by about 30%, and the effect was greatest when the 
cover crop itself was an AMF host44. In addition, crop diversification 
and application of organic soil amendments are linked to ‘suppres-
sive soils’ that provide valuable ecosystem services such as disease, 
weed and insect pest control59,63–65. Agricultural practices support-
ing a diversity of AMF within crop microbial communities have 
emerged as being critical in the suppression of soil-borne patho-
gens, which occurs through mechanisms such as competition for 
root space and modulation of plant immune responses63. Recent 
work in wheat found that enrichment of disease-protective fungi in 
rhizosphere communities depended on the type of legume in crop 
rotation66, suggesting that specific plant species or cultivars may 
optimize disease protection. Finally, soil amendments can promote 
positive plant–soil feedback by maintaining or enhancing soil struc-
ture through changes in the microbial community (for example, 
increased fungal growth67 and restoring soil microbial diversity fol-
lowing repeated monoculture68).

In some cases, positive effects are observed in response to some 
agrochemicals. For example, increases in the abundance of microor-
ganisms predicted to compete against pathogens and promote plant 
growth have been observed in chemically treated soils69. Herbicides 
may also stimulate microbial activity and microbial suppression of 
soil pathogens25, thus potentially indirectly benefiting plant health. 
Similarly, chemical control could indirectly contribute to changes 
in plant-associated microbiomes that enhance insect pest protec-
tion, but this has yet to be tested. In general, it remains unclear why 
seemingly opposing effects are observed (for example, both nega-
tive and positive effects of pesticides) and what specific factors (for 
example, crop type and geographic region) contribute to the range 
of impacts management approaches can have on crop microbiomes 
(Table 1). Disentangling the interconnected nature of microbiomes 
will therefore be important for developing ecology-guided man-
agement strategies that support agroecosystem health. For exam-
ple, understanding how management influences the phyllosphere 

microbiome is critical because it is the aboveground interface 
between crop plants, insect pests and foliar pathogens. Steering crop 
microbiomes through management will probably rely on continued 
efforts to identify unintentional or off-target effects and integration 
of microbiome knowledge into decision-making.

Approaches for managing agricultural microbiomes
Thus far, intentional microbiome manipulation in agroecosys-
tems has focused on applying single microorganisms to improve 
plant growth or control pathogens and pests (first-generation 
microbiome manipulation; Fig. 2), but numerous challenges have 
prevented their widespread success. In this section, we review 
the use of first-generation microbial inoculants. We next identify 
limitations and potential solutions to first-generation microbiome 
manipulation. Finally, we summarize emerging work that attempts 
to incorporate more holistic approaches to engineering whole 
microbial communities and novel approaches to breeding crop 
plants for enhanced interactions with beneficial microorganisms 
(second-generation microbiome manipulation; Fig. 2).

First-generation microbiome manipulation. Applications of ben-
eficial microorganisms for promoting plant growth or protection 
from pests and pathogens have been used in agriculture for more 
than 100 years, beginning with Nitragin, nitrogen-fixing Rhizobium 
spp. for legumes70, first patented in 1896. Today, the most commonly 
used microbial inoculants in agriculture include rhizobia71, arbuscu-
lar mycorrhizae72, free-living nitrogen fixers73, entomopathogens74, 
fungal endophytes75,76 and plant-growth-promoting rhizobacteria14. 
These single-microbe-based products are formulated for delivery 
by seed treatment or soil drench for soil-dwelling or endophytic 
organisms, or foliar spray for phyllosphere dwellers77. Products 
can promote plant growth through various mechanisms, including 
increased nutrient availability or hormone modulation77. Biocontrol 
agents target pests and pathogens directly through competition, 
hyper-parasitism and other forms of antagonism or indirectly 
by triggering defence-hormone-mediated systemic resistance77. 
However, even among microorganisms forming tight symbiotic 
associations with plants or insects (for example, legume–rhizobia, 
root–mycorrhizae or lactic acid bacteria–insect gut associations), 
the beneficial effects of single microbial inoculations on host health 
are variable71,72,78. For example, a recent meta-analysis found that 
effects of rhizobial inoculants on soybean yield ranged from −34% 
to 109% in the field, depending on presence of native rhizobia, soil 
characteristics, climate and soybean genotype71. In general, micro-
organisms found to promote growth or control pathogens and pests 
in laboratory and greenhouse settings often do not provide the same 
benefit in the field79 (reviewed in refs. 14,16,77).

Overcoming challenges of first-generation microbiome manipulation. 
Failure to transfer microbial benefits from controlled conditions 
to a complex agricultural setting arises due to a number of factors, 
including lack of correlation between in vitro and in vivo activ-
ity14,80, variation across plant genotypes71,73,75,81–83, product formula-
tion issues77 and low environmental persistence77,79.

Persistence in the environment is one of the biggest constraints to 
the effective development of microbial inoculants. Many microbial 
inoculants provide benefits under controlled conditions with high 
inoculation rates but fail to persist in the field, leading to low effi-
cacy77,79. Often, these inoculants are simply outcompeted by native 
microbial communities, disappearing within weeks or persisting at 
low, but ineffective, levels84–86. Additionally, the presence of closely 
related microorganisms in the field may prevent establishment or 
diminish the effectiveness of an added beneficial microorganism71. 
For example, rhizobial inoculants enhance soybean growth best in 
fields with a low presence of native rhizobia, suggesting that native 
strains may competitively exclude the inoculant or that rhizobial 
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benefits are already maximized in fields with high levels of native 
strains71. Further research is needed to understand how environ-
mental factors (such as native microbial communities, soil type, 
nutrient levels, environmental stress and management history) 
influence the establishment of microbial inoculants and benefits 
conferred to the host under complex field conditions72,73,87. In par-
ticular, understanding how native microbial communities interact 
with introduced microorganisms may yield important insights into 
better management of microbiomes through inoculative methods.

Proposed strategies for overcoming environmental-persistence 
issues include improving methods of strain selection14,80, repeated 
applications88,89, and using endophytically colonizing75,76 and region-
ally adapted microorganisms71,90. Recent work has begun to identify 
how interconnections between plant- and insect-associated micro-
organisms might be exploited for improved microbial applications. 
For example, many insect pathogens colonize plants as endophytic 
commensals, thus providing the opportunity for pest protection 
through inoculation of plants, rather than through direct applica-
tion to invading pests76. Additionally, novel strategies to use pol-
linators for disseminating biocontrol strains89, or seed-colonizing 
endophytes91,92 to target crop flowers, also show promise. Genetic 
engineering to improve beneficial microbial traits has also been 
heavily researched over the past 30 years74,93,94; however, the risks 
associated with releasing genetically modified microorganisms into 
the environment are substantial and severely limit their applicabil-
ity. Efforts to engineer beneficial traits into obligate insect symbi-
onts are more promising, as containment is less of an issue95.

Another approach to optimizing the impact of microbial inocu-
lants involves the development of products containing multiple 
microbial strains with different functions (for example, plant-growth 
promotion or biocontrol) that are hypothesized to act additively to 
improve plant health. Several products have been developed using 
this strategy, but with mixed results96–99. For example, increased 
diversity of Pseudomonas strains introduced to alfalfa rhizospheres 
resulted in community collapse from increasing antagonistic inter-
actions97, whereas higher diversity of biocontrol Pseudomonas 
strains introduced to tomato rhizospheres was linked with better 
persistence, higher suppression of Ralstonia solanacearum pathogen 
populations and reduced bacterial wilt disease symptoms98. Recent 
modelling suggests that potential negative interactions between dif-
ferent microorganisms could interfere with desired benefits100,101. 
Additionally, recent work suggests that first-generation microbiome 
manipulation may be more effective under stressed conditions (that 
is drought, heat and salinity)87,102,103, although additional fieldwork 
is needed to confirm this.

Not all microbial inoculants need to be persistent to be effec-
tive. For example, the pathogen Erwinia amylovora, the causal agent 
of fire blight, has been successfully controlled in apple orchards 
with yeast (Aureobasidium pullulans) and bacterial (Pantoea agglo-
merans) isolates that colonize flowers and prevent the pathogen 
from establishing104,105. In this case, successful control of Erwinia  
amylovora is probably attributable to a relatively small window  
for infection, and thus long-term persistence of biocontrol inocu-
lants in the environment is unnecessary. Another strategy to 
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circumvent environmental-persistence issues involved in using bio-
control microorganisms is rotation with conventional fungicides, 
which also reduces levels of synthetic inputs and the risk of fungi-
cide resistance106,107. Repeated applications coupled with fungicide 
rotations can obviate the need for long-term persistence of the bio-
control agent.

Second-generation microbiome manipulation. Efforts to opti-
mize microbial inoculants may improve their efficacy, but failure to 
account for complex microbial community interactions has severely 
limited the success of intentional microbiome manipulation. Thus, 
to improve management strategies for agricultural microbiomes, 
microbe–microbe and host–microbiome interactions must be 
considered. Current efforts to identify positive microbe–microbe 
interactions contributing to plant health—such as helper bacteria 
Delftia and Azospirillum that improve nodulation of rhizobia in 
the field108,109—are promising, although even these effects can be 
host-genotype dependent109. Recent studies have identified ben-
eficial consortia through isolation and identification of synergistic 
combinations of prevalent community members present in plants 
grown in disease-suppressive soils110,111. In one study, a consortium 
of several native isolates reduced plant mortality by half in a field 
setting111, and these isolates were recovered at the end of the field 
season, suggesting that this approach may be effective in identify-
ing and deploying persistent microbial consortia in large-scale crop 
protection. However, identification of properties of highly complex 
communities that can be used to rationally design microbial con-
sortia to perform specific functions that benefit crop health remains 
difficult. The following section summarizes recent efforts to 
develop methods for engineering beneficial crop microbiomes from 
a community perspective. In addition, we discuss progress towards 
breeding crops for beneficial interactions with entire microbial 
communities.

Designing synthetic communities. One promising avenue for 
whole-microbiome manipulation is the design of synthetic commu-
nities using culturable isolates to reconstitute a simplified micro-
biome in structure and function14,15,112–114. Thus far, this approach 
has primarily been used to understand basic features of micro-
bial community assembly and functional interactions. Predicting 
higher-order community dynamics has proven challenging115, 
although measuring the effects of a subset of all possible pairwise 
combinations enabled the development of a predictive model capa-
ble of identifying combinations of bacteria with predictable effects 
on plant responses116. Advances in high-throughput screening tech-
nologies will also enable faster identification and improved design of 
beneficial consortia117. While further research will probably improve 
the effectiveness of the inoculation approach to developing ben-
eficial microbial consortia, additional microbiome-manipulation 
approaches are needed for different farming systems. Recently, 
researchers have proposed alternative microbiome-manipulation 
strategies, including ‘steering’ native microbiomes towards a 
desired beneficial outcome118,119 using host-mediated engineering 
and crop breeding for positive microbiome interactions. These two 
approaches are reviewed below.

Host-mediated engineering of microbiomes. Host-mediated engi-
neering refers to the use of a host organism (for example, a plant 
or animal) to selectively generate microbial communities that pro-
duce desired effects on specific host traits (for example, on stress 
resistance, growth and reproduction)119. This process was originally 
demonstrated in Arabidopsis plants by Swenson et al.120, where 
selection for a growth-promoting soil biotic community success-
fully increased plant biomass. Host-guided engineering efforts have 
since focused on abiotic stress tolerance and phenology (that is, 
flowering time and hatching time) in wheat121, Arabidopsis122 and 

the fruit fly123. Additional traits known to be modulated by micro-
organisms are promising candidates for host-mediated selection on 
rhizosphere and phyllosphere-associated124 crop microbiomes, such 
as growth, development and various stress responses. Engineering 
robust colonizing leaf or endophyte microbial communities that 
directly alter insect health—whether positively in the case of benefi-
cial insects like pollinators, or negatively for pest insects—may also 
be possible using host-mediated selection approches119,125.

One of the major benefits of host-mediated engineering is that 
it does not rely on a specific mechanism or function associated 
with the target microbiome. Instead, by selecting for a desired host 
trait associated with a particular microbial community, antagonis-
tic interactions between microorganisms can be avoided and more 
stable communities may evolve over time119,124. However, many out-
standing questions remain for optimization and successful imple-
mentation of host-mediated selection, including choice of host trait, 
strength of selection to impose on the target microbial community, 
transferability and stability of the selected microbiome, appropri-
ate experimental controls, and competing sources of environmental 
selection that could interfere with beneficial effects of engineered 
microbiomes. In addition, current host-engineering experiments 
have been performed under highly controlled conditions and fur-
ther work is required to determine whether selected microbiomes 
are effective under field conditions given the enormous variation in 
soil type, native microbial communities and climate. Overall, meth-
ods aimed at selectively engineering microbial communities require 
substantial further research before being applied to agricultural 
crops and insects.

Breeding for beneficial plant–microbe interactions. Natural varia-
tion in microbial community composition and responsiveness to 
introduced microorganisms has been shown for many crop plants, 
including common bean126, maize127,128, rice129,130, barley83 and 
tomato82,131, with plant cultivar contributing to 5–20% of overall 
microbiome variation. Many of these studies examined variation 
in microbiome composition and diversity across a small number of 
genotypes and growing conditions, which limits the ability to gen-
eralize genotypic effects on the microbiome. Large-scale field stud-
ies examining heritability of the root-associated microbiome have 
been performed only for maize127,128 and rice130, although overall, it 
is largely unclear whether and how heritable variation in the micro-
biome correlates with beneficial traits.

The next step towards developing crop breeding that integrates 
knowledge of microbiomes is to identify target traits for beneficial 
plant–microbe interactions. Although several studies have iden-
tified natural variation for recruitment of beneficial bacteria to 
roots81,82,131,132, few loci related to microbiome-related traits have 
been isolated. As domestication appears to have limited the abil-
ity of modern cultivars to interact with beneficial microorgan-
isms, some researchers suggest mining wild relatives of modern 
crops for beneficial microbe–plant interaction traits18,133, which 
has resulted in identification of a beneficial allele of the OsCERK1 
locus in wild rice that enhances AMF colonization in roots when 
expressed in cultivated rice varieties129. The plant immune system 
has also been implicated in proper root endosphere microbiome 
assembly134; thus, it has been hypothesized that genetic variation in 
plant defences may contribute to interactions with the rhizosphere 
microbiome126,135. To date, this hypothesis has primarily been tested 
in the model plant Arabidopsis thaliana81,136. For example, natural 
variation in root-specific production of the natural antimicrobial 
camalexin has been shown to be positively correlated with response  
to growth-promoting bacteria such as Pseudomonas CH267 (ref. 137).  
Plant signalling pathways that function in communication with 
microbial communities are only beginning to be explored83,136,137,138. 
Continued focus on this area will vastly increase our ability to iden-
tify and deploy microbiome-related traits in crop breeding.
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Thus far, efforts to genetically engineer plants to alter relation-
ships with microorganisms have focused on increasing pathogen 
resistance139 and introducing nitrogen fixation140. More recently, 
RNA interference targeting obligate insect symbionts has been 
engineered into host plants to control pests141–143. Gene-editing 
strategies such as clustered regularly interspaced short palin-
dromic repeats (CRISPR) have been used to improve host resis-
tance to pathogens and pests139 and accelerate domestication of wild 
crops144–146, which could be used in reverse to reintroduce beneficial 
microbiome-related traits from wild relatives. Plant genetic modi-
fication, while more difficult to perform than microbial genetic 
modification, is more straightforward from a regulatory standpoint, 
although regulatory and social hurdles to crop genetic modifica-
tion remain considerable. Novel strategies are being developed to 
co-engineer plants and microorganisms147, laying the groundwork 
for engineering plants able to attract or activate co-engineered ben-
eficial microorganisms through an artificial plant-generated signal 
and microbial response. This approach could potentially alleviate 
both the persistence problem of microbial inoculants as well as con-
cerns over containment of genetically modified microorganisms by 
combining signal recognition with strategies for containment.

A major challenge for breeding microbiome-related traits is 
the potential for off-target or undesirable side effects on host fit-
ness and microbial community dynamics. For example, increased 
recruitment of beneficial Pseudomonas isolates in Arabidopsis roots 
incurred the cost of greater susceptibility to Pseudomonas syringae81. 
In addition, breeding for beneficial plant–microbiome traits faces 
the same challenges as all quantitatively variable traits, namely dif-
ficulty in breeding of many quantitative trait loci with small effects. 
Nevertheless, even if traditional breeding for beneficial traits is not 
feasible, an increased understanding of genotypic variation in ben-
eficial microbiome-related traits will improve cultivar selection, and 
novel gene-editing techniques will enable targeted alterations that 
enhance beneficial interactions with microbial communities.

the future of precision microbiome management
After decades of research on crop-associated microbial commu-
nities, the path towards effective microbiome-informed manage-
ment is taking shape. Application of ecological concepts targeting 
community-level properties of microbiomes rather than single micro-
organisms shows the most promise for enhancing crop protection 
and improving sustainability. However, the combination of tech-
niques that prove most effective for promoting beneficial crop micro-
biomes will likely depend on climate and soil conditions specific to 
geographic regions and the unique attributes of different farming sys-
tems. Embracing the complexity and interconnected nature of agri-
cultural microbiomes will be critical for establishing the knowledge 
base needed to develop management options that maximize micro-
bial benefits to crop health and advance microbial biotechnology.

In parallel with incorporation of the human microbiome in 
development of precision medical treatments148, the path forward 
for agriculture is to create individualized management plans that 
include all interconnected sectors of crop microbiomes (Fig. 1). 
Thus far, crop-associated microbiome data have largely been left 
out of the framework for advancing precision or digital agricultural 
approaches, although the possibilities are beginning to be recog-
nized15,149. The future of precision microbiome management will 
therefore customize management practices, host-specific factors 
and microbial biotechnology (Fig. 2, 3rd generation) to promote 
both crop health and agroecosystem sustainability. Importantly, 
this next generation of microbiome-informed management must 
extend not only to field crops, but also to the growing sectors of 
controlled-environment agriculture (that is, greenhouse, urban 
agriculture and hydroponics).

The next steps towards translation of crop microbiome knowl-
edge for enhanced crop protection and performance across diverse 

farming systems will require approaches that are tailored, predictive 
and integrative (Fig. 3). Tailoring microbiome-based management 
solutions to different farming systems will depend on a number of 
different farming system characteristics (for example, conventional 
versus organic practices, controlled environment versus field sys-
tem and size). For example, beneficial microbial inoculants often 
improve plant growth and protection under controlled laboratory 
or greenhouse conditions, in contrast to variable success of applica-
tions under field conditions. Single-microorganism inoculants may 
therefore be more useful under controlled settings, such as indoor 
agriculture, hydroponics, aquaponics and high tunnels. It may 
even be possible to use genetically modified microbial inoculants 
in controlled-environment agriculture, given appropriate contain-
ment and cost-effectiveness. By contrast, large-scale conventional 
commodity crop farms may benefit more from predictive analysis 
that enables regionally customized management to steer the micro-
biome than from microbial inoculants, although further research 
may improve the use of inoculants in field crops. Within-field data 
on a multitude of yield parameters already exist for field crops (pre-
cision farming); integrating microbiome data into this framework 
will likely enable the discovery of predictive metrics for soil health, 
crop yields and disease severity150. Finally, third-generation micro-
biome management will require integration across all three sectors 
of microbiome research: management, host, and microbial biotech-
nology (Figs. 2 and 3).

Critical research needs for managing crop microbiomes. 
Capitalizing on interconnectedness of plant, soil and insect microbi-
omes to develop novel microbial biotechnology and improve manage-
ment practices. There is a general lack of information on microbiomes 
of agriculturally relevant insects and aboveground plant tissues (for 
example, leaves, flowers and pollen) relative to existing knowledge 
of soil microbial communities (see Table 1). Filling these knowledge 
gaps will enable development of novel microbial inoculants that 
take advantage of the intersection between plant and insect micro-
biomes; for example, through development of stable consortia that 
provide multiple simultaneous benefits, such as protecting from 
foliar pathogens and improving pollinator health. In fact, research 
in strawberry indicates that rhizosphere microorganisms not only 
move into aboveground plant tissues (such as leaves and flowers) 
where they can be transferred between plants by pollinators, but 
some strains can also form mutualistic relationships that protect 
both plants and pollinators from pathogens21. The floral microbi-
ome is generally understudied, but has important implications for 
pollinator health and understanding how management practices 
shapes crop plant–pollinator interactions151. Additionally, although 
microbial symbionts are hailed as the next generation of insect 
pest control, we know very little about how management practices 
alter insect microbiomes. Do insecticides and crop-diversification 
practices affect microbial communities of insect vectors and thus 
transmission of plant pathogens in agricultural landscapes? Could 
chemical control practices induce systemic changes in phyllosphere 
or rhizosphere communities that indirectly affect pest resistance or 
attractiveness to pollinators? Overall, more research is needed that 
investigates how management practices alter complex relationships 
between plants, insects and microorganisms.

Identification and development of synergistic management practices 
that positively steer the microbiome to improve crop protection and 
overall production. Interacting or synergistic effects of agricultural 
practices and microbial biotechnology on microbiome structure 
and function are not well studied. For example, a growing body of 
work indicates that crop-diversification practices promote higher  
soil microbial diversity; however, additional practices (for example, 
tillage or chemical control) could counteract potential benefits for 
crop health (Table 1). Furthermore, management practices can 
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generate variable effects across crop microbiomes, depending on 
microbiome source (for example, soil versus rhizosphere), group 
of microorganisms (for example, bacteria versus fungi), soil type 
or existing native communities, and may produce only minor 
impacts relative to additional dominant factors shaping micro-
bial communities (for example, plant growth stage, species, culti-
var, climate, or weather variables). Researchers are only beginning 
to document how the multiple interacting layers of management 
translate to changes in crop health and productivity. It will therefore 
be important for future work to identify when management leads 
to conflicting effects and how to avoid detracting from beneficial 
plant–microbe relationships, particularly when integrating micro-
bial biotechnology. Intentional use of key practices (such as crop 
rotations and organic amendments) to steer microbial communi-
ties to produce specific outcomes for crop health is not well docu-
mented. For example, although positive plant–soil feedback leading 
to suppression of insect pest populations has been confirmed in 
greenhouse and laboratory studies152,153, how field-management 
practices could be designed to produce similar effects is unclear. 
Further knowledge of processes governing microbial community 
stability and evolution is needed, which will in turn contribute to 
the effectiveness and persistence of introduced microbial products.

Continued improvement of first-generation and validation of novel 
second-generation microbial biotechnologies in large-scale agricul-
tural contexts. Although microbial inoculants have been used in 
agriculture for the past 100 years, much remains to be accomplished 
for their full integration as a standard agricultural practice, in  
particular overcoming persistence in the field, one of the major 
hurdles to inoculant effectiveness. Further work in understand-
ing interactions between introduced inoculants and native com-
munities, identifying microbe–microbe interactions important to 
emergent host phenotypes and community stability, and developing 
best practices for introducing engineered communities—whether 
through synthetic community inoculants or through soil-transplant 
methods118,154—will facilitate improved effectiveness of micro-
bial inoculant biotechnology. Novel approaches to identifying  

microbial traits important to plant health in the field, coupled with 
high-throughput screening155, will also enable discovery and imple-
mentation of improved biotechnology.

Identification of beneficial microbiome-related crop traits for both 
traditional and next-generation gene-editing-assisted breeding. 
Disentangling the complex chemical communication between 
plants and associated microbial communities is an emerging 
area of research83,136,137,138 that will allow for the identification of 
plant genetic traits that underlie host–microbiome interactions. 
Identifying these microbiome-related traits will enable breed-
ing efforts that take advantage of the extended genome of plants11 
through both traditional breeding methods as well as through 
transgenic and gene-editing techniques. Combining emerging tech-
nologies, such as experimental microbial ecosystems used for pre-
cise manipulation of root microbiomes (for example, EcoFABs156) 
and high-throughput automated sensing platforms for plant phe-
notyping (that is, phenomics), could further enable researchers to 
screen for microbiome-related host phenotypes to assist breeding 
efforts, as well as design and test microbial products to optimize 
beneficial plant-microbial partnerships. Development of EcoFABs 
for identifying microbiome-related crop traits is promising, but the 
scale of these systems is currently limited and thus not yet appli-
cable to the interaction between microbiome and the whole plant or 
non-model species.

Development of predictive analytics and modelling integrated with 
precision management. There remains a complete lack of methods 
to predict the effects of management on the structure and function 
of crop microbiomes. However, a recent study using a phylogenetic 
approach found that soil microbial communities are composition-
ally more similar between close plant relatives, suggesting that the 
impact of crop rotation practices on structuring agricultural soil 
microbiomes can, in part, be predicted by crop species and relat-
edness157. Initial efforts to use spatial variation in microbiome data 
to predict crop and pollinator health are also promising150,158–160,  
but need to be validated with larger sample sizes across diverse 

Management
system

Microbial
inoculants

Host

Predictive
analytics

Controlled Tailored Open

Indoor farming Greenhouse Field

Predictive

Academia

Integrative

Growers Industry

Extension

Fig. 3 | third-generation microbiome management will be tailored across different farming systems, use predictive analytics to optimize management, 
and integrate across management, microbial biotechnology and host genetics. Achieving third-generation microbiome management will require extensive 
collaboration across academia, industry and growers with extension serving as an essential mediator among these groups. Grey bars indicate hypothesized 
relative importance of each area along the continuum of farming systems from controlled to open. Microbial inoculants may be more useful under 
controlled growing conditions, whereas predictive analytics for microbiome management may be more useful for large-scale field agriculture.
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agroecosystems. The incredible heterogeneity of microbial com-
munities due to differing soil conditions even within the same field 
will probably complicate these efforts8,160,161. However, new tech-
nology enabling inexpensive, high-throughput quantitative PCR162 
and automated, consistent soil sampling will probably make quan-
titative monitoring of agricultural-productivity-associated bacterial  
taxa or functional genes financially and technically feasible. 
However, predictive microbiome management at field scale will 
require advances in computational approaches that can translate 
increasingly large amounts of microbiome data into data-driven 
decisions for managing all interconnected sectors of crop microbi-
omes, such as risk assessment, use of microbial indicators to identify 
stress or damage, and predictive modelling of microbiome spatio-
temporal dynamics.

Identification of best practices in microbiome management for dif-
ferent farming systems. Not only is there a general need to evalu-
ate the effectiveness of microbial biotechnology and management 
approaches in emerging farming systems (for example, urban, aqua-
ponics and controlled-environment systems), but incorporating 
unique attributes of each system will be important for establishing 
best practices. For example, differences between annual and peren-
nial systems may make crop microbiomes more or less amenable 
to manipulation due to differences in breeding cycles. Effectiveness 
of microbial biotechnology may therefore rely on repeated appli-
cation in annual crops, whereas the roots of perennial crops (for 
example, bioenergy, forage and tree crops) may be able to maintain 
beneficial consortia over multiple growing seasons. Another key to 
developing customized microbiome management in different farm-
ing systems will be determining to what extent microbial diversity 
is a good indicator and overall driver of crop health and agroecosys-
tem function. Should diversity be a target for managing crop micro-
biomes or engineering of microbial community inoculants, and if 
so, what balance of functional and taxonomic diversity should be 
maintained? Lower diversity is not always indicative of unhealthy 
or unstable microbial communities163, and in some cases efforts to 
manage microbiome diversity have resulted in community collapse 
from increasing antagonistic interactions97. Learning from studies 
in natural or unmanaged systems will be important for expand-
ing basic theory on microbial community dynamics and applying 
community ecology concepts that promote crop health and agro-
ecosystem functioning, without being overly reliant on measures 
of diversity164. Finally, the short-term versus long-term effects of 
reshaping microbiomes through agricultural practices and use of 
microbial biotechnology is underexplored. Some practices exhibit 
high but transient effects on microbial communities (see refs. 165–167),  
suggesting that crop microbiomes may recover from disturbances. 
Conversely, long-term organic management is linked to higher soil 
and rhizosphere microbial diversity168,169, which in turn has been 
shown to promote resistance to insect pests153. However, it is gen-
erally unclear how to optimize management practices and micro-
bial technology to boost crop production, while also avoiding 
physiological trade-offs and maintaining long-term agroecosystem 
sustainability.

Concluding vision
A one-size-fits-all approach to managing agricultural microbi-
omes is unrealistic. There is a clear need for improved integra-
tion of microbial technology and host genetics to develop best 
management practices that are optimized across diverse farming 
systems. The current disconnect between industry production 
of next-generation microbial products and research supporting 
the benefits of commercially available products under variable  
conditions will be a challenge to navigate. Advancing precision 
microbiome management will therefore require coordination  
across academia, industry, growers and the public. Furthermore, 

translation of microbiome research relies on engagement and edu-
cation efforts to bridge gaps and disseminate information tailored 
to the needs of different growers. Interdisciplinary training of sci-
entists and integrated research efforts across academic–industry–
grower partnerships will be needed, as well as further development 
of data-collection technology (for example, sensors and drones) 
in order to identify and deploy the best strategies for microbiome 
management. Agricultural microbiome management is complex 
and multifaceted, but by addressing critical research needs, appro-
priate guidelines and approaches can be developed. We ultimately 
envision a decision-tree framework that will enable growers to make 
data-driven management decisions on the appropriate practices, 
cultivars and microbial inoculants to optimize the health of their 
crop and soil for their specific region and farming system. These are 
exciting times for harmonizing efforts that harness the power and 
complexity of all interacting sectors of crop microbiomes to fuel a 
future of sustainable and healthy agroecosystems.
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