COMPUTABILITY (16/10/2023)
EXERCISE: URM ${ }^{\text {s }}$ mochime: variant of URM

$$
\begin{aligned}
T(m), m) & \\
e^{s} & \stackrel{T}{s}(m, m)
\end{aligned} \quad r_{m} \leftrightarrow r_{m}
$$

proof
$\left(e \subseteq e^{s}\right)$ Given $f \in e \quad f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ mod $f \in e^{s}$ If $f \in e$ then there is P URM program sit. $f_{p}^{(k)}=f$
We know that there is P^{\prime} URM - program without T () imotruchons s.t. $\quad f_{p^{\prime}}^{(k)}=f_{p}^{(k)}$. But p^{\prime} is also a URM ${ }^{s}$ - machine plgram vo $f=f_{p^{\prime}}^{(k)} \in e^{s}$.
$\left(e^{s} \leq e\right)$ Take $f: \mathbb{N}^{k} \rightarrow \mathbb{N} \quad f \in e^{s}$ and let P a URM ${ }^{s}$. program such that $f=f_{p}^{(k)}$. We want to "transform" P into a URM program p^{\prime} s.t. $\quad f_{p^{\prime}}{ }^{(k)}=f_{p}^{(k)}$
$T_{s}(m, m)$ wa $T(m, i) \quad R_{i}$ mot used in P
$T(n, m)$

$$
T(i, m)
$$

A UR such that $f_{p}^{(k)}=f_{p 1}^{(k)}$

We proceed by induction on $h=$ number of T_{s} instructions in P $(h=0) \quad P$ is already o, URM Program, take $P^{\prime}=P$
$(h \rightarrow h+1)$ Let p has $h+1$ T_{s} instructions

We need
$\rightarrow P$ allay terminates (if it does) at lime $s+1$
$\rightarrow i=\operatorname{mox}\left(\left\{m \mid R_{m}\right.\right.$ is used $\left.\left.\operatorname{cm} P\right\} \cup\{k\}\right)+1$
Them $f_{p^{\prime \prime}}^{(k)}=f_{p}^{(k)}$ and $p^{\prime \prime}$ hos h Ts instructions.
Hence by (moluclive hyp. there is a URM program P^{\prime} sit. $f_{p^{\prime}}^{(k)}=f_{p_{11}}^{(k)}$
Thus

$$
f=f_{p}^{(k)}=f_{p 11}^{(k)}=f_{p 1}^{(k)}
$$

ie. fee.

The proof is wrong: I am using the imoluctive hyp. on $P^{\prime \prime}$ which is mot a URMS - program (it contains both T and T_{s})

You can make it work by proving a stronger assertion "Every program P which uses all insturctions, including T and T s cam be bromsformed in a URY-progrom P^{\prime} sit. $f_{p}^{(k)}=f_{p^{\prime}}^{(k)}$ "

EXERCISE: Consider URM $=$ without JUmp instructions

$$
e=f e
$$

proof
An URM $=$ - program

$$
P \begin{cases}I_{1} & \ell(P)=s \quad \text { length of program } P \\ \vdots & P \text { terminates after } e(P) \text { steps } \\ I_{s} & \end{cases}
$$

All functions $1 m$ e ore total $n s e=q e$
egg.

$$
\left.\begin{array}{ll}
f: \mathbb{N} \rightarrow \mathbb{N} \\
f(x) \uparrow \quad \forall x \in \mathbb{N} & f \in e \quad J(1,1,1) \\
& f \notin e=\quad \text { because it is mot total } \\
& \left(\begin{array}{lll}
\text { saying "it uses jump" is mot sufficient } \\
\text { e.g } J(1,1,2) \text { compotes } f(x)=x \\
e
\end{array}\right.
\end{array}\right)
$$

(restrict to unary functions)
fumchoms of the shape

$$
f(x)=c
$$

02
for c suitable co mutant

$$
f(x)=x+c
$$

Demote $r_{1}(x, k)=$ content of R_{1} after k-step of computation storting from $\frac{x|0| 01-}{1}$

We prove by induction on k host

$$
r_{1}(x, k)=\left\langle\begin{array}{l}
c \\
x+c
\end{array}\right.
$$

$$
(k=0) \quad r_{1}(x, 0)=x=x+0 \quad c=0 \quad \text { ok }
$$

$(k \rightarrow k+1) \quad$ By (manclive hyp. $\quad R_{1}(x, k)=\leq x+c$
differem oses according to the shape of I_{K+1}

3 coses

$$
\begin{aligned}
& I_{k+1}=z(n) \\
& \text { two subcoses } \\
& \text { - } m=1 \quad r_{1}(x, k+1)=0 \\
& -m>1 \quad r_{1}(x, k+1)=r_{1}(x, k) \quad \text { ok, by ind.hyp. } \\
& I_{k+1}=S(m) \quad-m=1 \quad r_{1}(x, k+1)=r(x, k)+1 \quad \text { ok, by ind. hyp } \\
& \text { - } m>1 \quad r_{1}(x, k+1)=r(x, k) \quad " / / / " \\
& I_{k+1}=T(m, m)-m>1 \text { or } m=1 \quad r_{1}(x, k+1)=r_{1}(x, k) \text { ok by incl. hyp. } \\
& \text { - } n=1 \text { and } m>1
\end{aligned}
$$

no hypotheses on t_{m}
I am lost....

Idea: $T(m, m)$ is "useless"
ok, but the orgument uses Jumps.... mot working smoothly.

The key observation is that the same property holds for all registers
$r_{y}(x, k)=$ content of R_{y} after k steps of computation storting from $x|0| 0 \mid \ldots$
show by induction on k that for all k

$$
r_{J}(x, k)=<\begin{aligned}
& c \\
& x+c
\end{aligned} \quad \text { for } c \text { suitable constant }
$$

The proof goes smoothly.
(exercise)
for h-org functions

* Decidable predicate

$$
\begin{aligned}
& \operatorname{div}(x, y)=" x \text { divides } y " \\
& \operatorname{div} \subseteq \mathbb{N} \times \mathbb{N} \\
& \operatorname{div}=\{(m, m * k) \mid m, k \in \mathbb{N}\}
\end{aligned}
$$

Or div: $\mathbb{N} \times \mathbb{N} \rightarrow$ \{true, folse $\}$

K-osey predicate
$Q\left(x_{1,}, x_{k}\right) \subseteq \mathbb{N}^{k}$
$Q: \mathbb{N}^{k} \rightarrow\{$ the e, false $\}$

Def. (decidable predicates):
Let $Q\left(x_{1}, x_{k}\right) \subseteq \mathbb{N}^{k}$. We soy that it is deciutable if

$$
\begin{aligned}
& x_{Q}: \mathbb{N}^{k} \rightarrow \mathbb{N} \\
& X_{Q}\left(x_{1}, x_{k}\right)= \begin{cases}1 & \text { if } Q\left(x_{1}, x_{k}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}\right) \subseteq \mathbb{N}^{2} \\
& Q\left(x_{1}, x_{2}\right)=" x_{1}=x_{2} " \quad \text { decidable } \\
& X_{Q}: \mathbb{N}^{2} \rightarrow \mathbb{N} \\
& X_{Q}\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1}=x_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

FALSE: $\begin{array}{ll}J(1,2, \text { TRUE }) & \frac{\left|x_{1}\right| x_{2}|0| \cdots}{J(1,1, \text { RES })}\end{array}$
TRUE: $S(3)$
RES : $T(2,1)$

Example: $Q(x)=" x$ is even " decidable

1	2	3
x	0	0
	\uparrow	C
	k	result

$$
\begin{aligned}
\text { EVEN: } & J(1,2, \text { YES }) \\
& S(2) \\
\text { ODD : } & J(1,2, N O) \\
& S(2) \\
& J(1,1, \text { EVEN }) \\
\text { YES : } & S(3) \\
\text { NO : } & T(3,1)
\end{aligned}
$$

* Computability on other domains

D countable
$\alpha: D \rightarrow \mathbb{N}$ bijective "effective"
(α^{-1} effective $)$
$A^{*}, \mathbb{Q}, \mathbb{Z}, \ldots \cdot$

Given $f: D \rightarrow D$ function is computable

$$
f^{*}=\alpha \circ f \circ \alpha^{-1}: \mathbb{N} \rightarrow \mathbb{N}
$$

is URM-computable

Example: Computability in \mathbb{Z}

$$
\begin{aligned}
& \alpha: \mathbb{Z} \rightarrow \mathbb{N} \\
& \alpha(z)= \begin{cases}2 z & z \geqslant 0 \\
-2 z-1 & z<0\end{cases}
\end{aligned}
$$

$\begin{array}{llllll}-1 & 1 & -2 & 2 & -3 & 3\end{array}$

$$
\begin{aligned}
& \alpha^{-1}: \mathbb{N} \rightarrow \mathbb{Z} \\
& \alpha^{-1}(m)=\left\{\begin{array}{l}
\frac{m}{2} \\
-\frac{m+1}{2}
\end{array}\right.
\end{aligned}
$$

m is even
m is odd

$$
\begin{aligned}
& f: \mathbb{Z} \rightarrow \mathbb{Z} \\
& f(z)=|z|
\end{aligned}
$$

computable

$$
\begin{aligned}
f^{*}=\alpha \circ f \circ \alpha^{-1}: \mathbb{N} & \rightarrow \mathbb{N} \\
f^{*}(m)=\alpha \cdot f \cdot \underbrace{\alpha^{-1}(m)} & = \begin{cases}m \text { even } & \alpha f\left(\frac{m}{2}\right)=\alpha\left(\frac{m}{2}\right)=2 \frac{m}{2}=m \\
m \text { odd } & \alpha f\left(-\frac{m+1}{2}\right)=\alpha\left(\frac{n+1}{2}\right)=2 \frac{m+1}{2}=m+1\end{cases} \\
= & \begin{cases}m & \text { if } m \text { even } \\
m+1 & \text { if } m \text { is odd. }\end{cases} \\
& \uparrow \text { URM-computable }
\end{aligned}
$$

