Vai al contenuto principale
Se prosegui nella navigazione del sito, ne accetti le politiche:
  • Condizioni di utilizzo e trattamento dei dati
Prosegui
x
Italiano ‎(it)‎
English ‎(en)‎ Français ‎(fr)‎ Italiano ‎(it)‎
Ospite
Login
Macroarea STEM
Home Calendario Unipd Portale Didattica Orari Uniweb Webmail My Media
Macroarea STEM
  • Home
  • Calendario
  • Unipd
  • Portale Didattica
  • Orari
  • Uniweb
  • Webmail
  • My Media
  • Altro
Espandi tutto Minimizza tutto
  1. DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE - DEI
  2. A.A.2024 - 2025
  3. Corsi di laurea
  4. IN2746 - INGEGNERIA DELL'AUTOMAZIONE E DEI SISTEMI
  5. Systems Laboratory 25
  6. Instructional Materials
  7. Videos

Videos

Aggregazione dei criteri
    • 00 bureaucracy 01 intro to the course.mp4 00 bureaucracy 01 intro to the course.mp4
    • 00 bureaucracy 02 peer instructions.mp4 00 bureaucracy 02 peer instructions.mp4
    • 00 bureaucracy 03 intro to the grading system.mp4 00 bureaucracy 03 intro to the grading system.mp4
    • 00 bureaucracy 04 intro to the extra points.mp4 00 bureaucracy 04 intro to the extra points.mp4
    • 00 bureaucracy 05 second intro to the extra points.mp4 00 bureaucracy 05 second intro to the extra points.mp4
    • 01 modelling in CT 01 does this f solve this ODE 01.mp4 01 modelling in CT 01 does this f solve this ODE 01.mp4
    • 01 modelling in CT 01 does this f solve this ODE 02 some examples.mp4 01 modelling in CT 01 does this f solve this ODE 02 some examples.mp4
    • 01 modelling in CT 01 does this f solve this ODE 03 Lotka Volterra intro.mp4 01 modelling in CT 01 does this f solve this ODE 03 Lotka Volterra intro.mp4
    • 01 modelling in CT 01 does this f solve this ODE 04 Lotka Volterra in math.mp4 01 modelling in CT 01 does this f solve this ODE 04 Lotka Volterra in math.mp4
    • 01 modelling in CT 01 does this f solve this ODE 05 Lotka Volterra in python.mp4 01 modelling in CT 01 does this f solve this ODE 05 Lotka Volterra in python.mp4
    • 01 modelling in CT 01 does this f solve this ODE 06 summary.mp4 01 modelling in CT 01 does this f solve this ODE 06 summary.mp4
    • 01 modelling in CT 02 which type of ODE 01 linear nonlinear.mp4 01 modelling in CT 02 which type of ODE 01 linear nonlinear.mp4
    • 01 modelling in CT 02 which type of ODE 02 autonomous nonautonomous.mp4 01 modelling in CT 02 which type of ODE 02 autonomous nonautonomous.mp4
    • 01 modelling in CT 02 which type of ODE 03 time constant time varying.mp4 01 modelling in CT 02 which type of ODE 03 time constant time varying.mp4
    • 01 modelling in CT 02 which type of ODE 04 summary.mp4 01 modelling in CT 02 which type of ODE 04 summary.mp4
    • 01 modelling in CT 03 computing equilibria.mp4 01 modelling in CT 03 computing equilibria.mp4
    • 01 modelling in CT 04 building phase portraits.mp4 01 modelling in CT 04 building phase portraits.mp4
    • 01 modelling in CT 05 what is automatic control 01.mp4 01 modelling in CT 05 what is automatic control 01.mp4
    • 01 modelling in CT 05 what is automatic control 02.mp4 01 modelling in CT 05 what is automatic control 02.mp4
    • 01 modelling in CT 06 how to linearize an ODE.mp4 01 modelling in CT 06 how to linearize an ODE.mp4
    • 01 modelling in CT 07 where is it meaningful to linearize.mp4 01 modelling in CT 07 where is it meaningful to linearize.mp4
    • 01 modelling in CT 08 the superposition effect.mp4 01 modelling in CT 08 the superposition effect.mp4
    • 01 modelling in CT 09 the impulse response.mp4 01 modelling in CT 09 the impulse response.mp4
    • 01 modelling in CT 10 convolution.mp4 01 modelling in CT 10 convolution.mp4
    • 01 modelling in CT 11 computing free and forced with Laplace - part 1.mp4 01 modelling in CT 11 computing free and forced with Laplace - part 1.mp4
    • 01 modelling in CT 11 computing free and forced with Laplace - part 2.mp4 01 modelling in CT 11 computing free and forced with Laplace - part 2.mp4
    • 01 modelling in CT 12 state space representations - part 1.mp4 01 modelling in CT 12 state space representations - part 1.mp4
    • 01 modelling in CT 12 state space representations - part 2.mp4 01 modelling in CT 12 state space representations - part 2.mp4
    • 01 modelling in CT 13 state space from ARMA.mp4 01 modelling in CT 13 state space from ARMA.mp4
    • 01 modelling in CT 14 state space and eigendecompositions.mp4 01 modelling in CT 14 state space and eigendecompositions.mp4
    • 02 stability in CT 01 marginal stability.mp4 02 stability in CT 01 marginal stability.mp4
    • 02 stability in CT 02 convergent equilibrium.mp4 02 stability in CT 02 convergent equilibrium.mp4
    • 02 stability in CT 03 BIBO stability.mp4 02 stability in CT 03 BIBO stability.mp4
    • 02 stability in CT 03 questions about BIBO stability.mp4 02 stability in CT 03 questions about BIBO stability.mp4
    • 02 stability in CT 03 where are we with the course.mp4 02 stability in CT 03 where are we with the course.mp4
    • 02 stability in CT 04 BIBO for LTI systems.mp4 02 stability in CT 04 BIBO for LTI systems.mp4
    • s 03 00 recap on where we are at, with the course.mp4 s 03 00 recap on where we are at, with the course.mp4
    • s 03 01 does this signal solve this RR.mp4 s 03 01 does this signal solve this RR.mp4
    • s 03 02 how to get a RR from an ODE.mp4 s 03 02 how to get a RR from an ODE.mp4
    • s 03 03 which types of RRs are there.mp4 s 03 03 which types of RRs are there.mp4
    • s 03 04 how to compute equilibria.mp4 s 03 04 how to compute equilibria.mp4
    • s 03 05 phase portraits.mp4 s 03 05 phase portraits.mp4
    • s 03 06 what is control.mp4 s 03 06 what is control.mp4
    • s 03 07 a few modules that are as for ODEs.mp4 s 03 07 a few modules that are as for ODEs.mp4
    • s 03 08 what is an impulse response.mp4 s 03 08 what is an impulse response.mp4
    • s 03 09 1D convolution in discrete time.mp4 s 03 09 1D convolution in discrete time.mp4
    • s 03 09 convolution in DT, part 2.mp4 s 03 09 convolution in DT, part 2.mp4
    • s 03 10 free and forced evolutions for DT LTI systems.mp4 s 03 10 free and forced evolutions for DT LTI systems.mp4
    • s 03 11 eigendecompositions and free evolutions for DT LTI systems.mp4 s 03 11 eigendecompositions and free evolutions for DT LTI systems.mp4
    • s 04 stability for DT systems.mp4 s 04 stability for DT systems.mp4
    • s 05 01 the role of filtering.mp4 s 05 01 the role of filtering.mp4
    • s 05 02 a first example of a filter, and why it is needed.mp4 s 05 02 a first example of a filter, and why it is needed.mp4
    • s 05 03 performance indexes for choosing a filter, part 1.mp4 s 05 03 performance indexes for choosing a filter, part 1.mp4
    • s 05 04 performance indexes for choosing a filter, part 2.mp4 s 05 04 performance indexes for choosing a filter, part 2.mp4
    • s 05 05 sinusoidal fidelity, part 1.mp4 s 05 05 sinusoidal fidelity, part 1.mp4
    • s 05 06 sinusoidal fidelity, part 2.mp4 s 05 06 sinusoidal fidelity, part 2.mp4
    • s 05 07 performance indexes for choosing a filter, part 3.mp4 s 05 07 performance indexes for choosing a filter, part 3.mp4
    • s-05 08 FIR filters.mp4 s-05 08 FIR filters.mp4
    • s-05 09 IIR filters.mp4 s-05 09 IIR filters.mp4
    • s-05 10 again on sinusoidal fidelity.mp4 s-05 10 again on sinusoidal fidelity.mp4
    • s-05 11 introduction to Lab 03.mp4 s-05 11 introduction to Lab 03.mp4
    • s-05 12 informal notes on filtering and Fourier.mp4 s-05 12 informal notes on filtering and Fourier.mp4
    • s-05 13 informal notes on sampling and Fourier.mp4 s-05 13 informal notes on sampling and Fourier.mp4
    • s-06 01 introduction to sysid.mp4 s-06 01 introduction to sysid.mp4
    • s-06 02 the geometrical meaning of least squares.mp4 s-06 02 the geometrical meaning of least squares.mp4
    • s-06 03 questions about least squares.mp4 s-06 03 questions about least squares.mp4
    • s-06 04 ill posedness and ill conditioning.mp4 s-06 04 ill posedness and ill conditioning.mp4
    • s-06 05 what is the variance of an estimator.mp4 s-06 05 what is the variance of an estimator.mp4
    • s-06 06 what is the bias of an estimator.mp4 s-06 06 what is the bias of an estimator.mp4
    • s-06 07 the Steins effect.mp4 s-06 07 the Steins effect.mp4
    • s-06 08 ridge regularization.mp4 s-06 08 ridge regularization.mp4
    • s-06 09 lasso regularization.mp4 s-06 09 lasso regularization.mp4
    • s-07 01 visualizing systems via block schemes.mp4 s-07 01 visualizing systems via block schemes.mp4
    • s-07 02 is cancelling unstable poles a good idea.mp4 s-07 02 is cancelling unstable poles a good idea.mp4
    • s-07 03 open loop vs closed loop control.mp4 s-07 03 open loop vs closed loop control.mp4
    • s-07 04 PID controllers.mp4 s-07 04 PID controllers.mp4
    • s-07 05 full state feedback control - part 1.mp4 s-07 05 full state feedback control - part 1.mp4
    • s-07 06 full state feedback control - part 2.mp4 s-07 06 full state feedback control - part 2.mp4
    • s-07 07 Luenberger estimators.mp4 s-07 07 Luenberger estimators.mp4
    • s-07 08 MPC.mp4 s-07 08 MPC.mp4
    • s-08 exercises 1.mp4 s-08 exercises 1.mp4
    • s-08 exercises 2.mp4 s-08 exercises 2.mp4
    • s-08 exercises 3.mp4 s-08 exercises 3.mp4
    • s-08 exercises 4.mp4 s-08 exercises 4.mp4
    • s-08 exercises 5.mp4 s-08 exercises 5.mp4
    • s-08 exercises 6.mp4 s-08 exercises 6.mp4
    • s-08 exercises 7.mp4 s-08 exercises 7.mp4
    • s-08 exercises 8.mp4 s-08 exercises 8.mp4
    • s-08 exercises 9.mp4 s-08 exercises 9.mp4
    • s-08 exercises 10.mp4 s-08 exercises 10.mp4
    • s-08 exercises 11.mp4 s-08 exercises 11.mp4
Academi

Info

    Piattaforme Moodle in AteneoTecnologie per la didatticaPortale Video MediaspaceStatus Piattaforme Elearning

Digital Learning e Multimedia - ASIT - Università degli Studi di Padova. Powered by Moodle

Ospite (Login)
Riepilogo della conservazione dei dati
Politiche
Ottieni l'app mobile
Powered by Moodle