>> Programma dettagliato e materiale didattico (update: 19/05/23)
Programma di teoria
- Numeri macchina:
» Rappresentazione dei numeri reali.
» Un esempio.
» Numeri macchina.
» Alcune proprieta' numeri macchina (minimo, massimo).
» Alcune proprieta' numeri macchina (cardinalita', spaziatura).
» Precisione singola e doppia;
» Troncamento e arrotondamento (con esempi e osservazioni);
» Precisione di macchina;
» Errori relativi e assoluti (per numeri e vettori), con esempi;
» Unita' di arrotondamento.
» Operazioni con i numeri macchina;
» Proprietà commutativa, associativa e distributiva delle operazioni floating point (con esempi);
» Errori nelle operazioni e loro propagazione;
» Il caso della somma, con dimostrazione;
» Esempio sulla cancellazione;
» Il caso del prodotto, con dimostrazione;
» Alcune problematiche numeriche;
» Valutazione di una funzione (condizionamento di una funzione);
» Alcuni esempi del condizionamento.
» Stabilita' di un algoritmo.
» Calcolo di una radice di secondo grado.
» Approssimazione di pi greco.
» Una successione ricorrente.
» Sulla somma ((1+x)-1)/x.
» Sulla valutazione di f(x)=x come tan(arctan(x)).
» Valutazione di polinomi: complessita' computazionale.
» Potenza di un numero.
» Determinanti: confronto della regola di Laplace e metodo con fattorizzazione LU. - Soluzione di equazioni non lineari:
» Soluzione numerica di equazioni nonlineari esempi, grafici e metodi iterativi.
» Ordine di convergenza, con esempio.
» Metodo di bisezione.
» Convergenza del metodo di bisezione.
» Test di arresto per il metodo di bisezione (con esempi).
» Metodo di Newton.
» Interpretazione grafica del metodo di Newton.
» Test di arresto per il metodo di Newton.
» Un teorema di convergenza locale per il metodo di Newton (traccia della dimostrazione).
» Un teorema di convergenza globale per il metodo di Newton (con dimostrazione).
» Newton e zeri multipli.
» Newton: alcuni esempi (casi semplici e multipli).
» Newton: radici quadrate ed n-sime.
» Metodo delle secanti.
» Metodo delle secanti: un teorema di convergenza.
» Metodo delle secanti: un esempio.
» Metodi di punto fisso: introduzione.
» Teorema di punto fisso di Banach (senza dimostrazione).
» Un teorema di punto fisso di convergenza locale (senza dimostrazione).
» Un teorema di punto fisso di convergenza locale (ordine p, senza dimostrazione).
» Metodo di Newton come metodo di punto fisso.
» Metodo di Newton e teorema di punto fisso di convergenza locale (traccia della dimostrazione). - Interpolazione polinomiale:
» Interpolazione: introduzione.
» Esistenza e unicita' del polinomio interpolatore (con dimostrazione)
» Errore di interpolazione (senza dimostrazione)
» Esempio di stima dell'errore di interpolazione.
» Convergenza dell'interpolazione polinomiale: nodi equispaziati e di tipo Chebyshev;
» Convergenza uniforme: una stima uniforme dell'errore tra funzione e polinomio interpolatore;
» Teorema di Faber e di Bernstein;
» Controesempio di Runge: comportamento dell'interpolante in nodi equispaziati e di Chebyshev;
» Stabilita' dell'interpolazione polinomiale: stime, costante di Lebesgue;
» Costante di Lebesgue per nodi equispaziati e di Chebyshev. - Funzioni polinomiali a tratti e splines:
» Un problema dell'interpolazione polinomiale.
» Funzioni polinomiali a tratti. Funzioni polinomiali a tratti, interpolanti e di grado "s".
» Esistenza e unicita' delle funzioni polinomiali a tratti, interpolanti e di grado "s" su dati che sono multiplo di "s".
» Errore dell'interpolante polinomiale a tratti di grado 1.
» Convergenza uniforme delle funzioni polinomiali a tratti, interpolanti e di grado "1".
» Splines.
» Differenza tra splines e interpolanti polinomiali a tratti.
» Splines cubiche interpolanti.
» Analisi dell'unicita' delle splines cubiche.
» Splines naturali, vincolate e periodiche.
» Splines not-a-knot.
» Convergenza delle splines cubiche.
» Osservazione sulla convergenza uniforme.
» Esperimento di Runge. - Minimi quadrati:
» Problema ai minimi quadrati: definizione e motivazioni.
» Teorema che lega il numero di campionamenti all'errore dei minimi quadrati.
» Alcuni esempi.
» Curve fitting.
» Regressione lineare (con esempio).
» Minimi quadrati e ricostruzione di funzione da dati perturbati. - Derivazione numerica:
» Derivazione e un risultato negativo di convergenza uniforme.
» Analisi del rapporto incrementale (con dimostrazione).
» Instabilita' del rapporto incrementale (con dimostrazione).
» Esempi.
» Analisi del metodo alle differenze simmetriche (con dimostrazione).
» Instabilita' del rapporto incrementale (con dimostrazione).
» Esempi. - Integrazione numerica:
» Integrazione numerica: stabilita' e convergenza uniforme (con dimostrazione).
» Formule interpolatorie.
» Grado di precisione.
» Grado di precisione delle formule interpolatorie.
» Regole del rettangolo: definizione ed errore.
» Regola midpoint: definizione ed errore.
» Formule di Newton-Cotes chiuse.
» Regola del trapezio ed errore.
» Regola di Cavalieri-Simpson ed errore.
» Formule composte e splines.
» Formula composta midpoint, errore, grado di precisione, esempio.
» Formula composta trapezi, errore, grado di precisione, esempio.
» Formula composta Cavalieri-Simpson, errore, grado di precisione, esempio.
»Formule composte: esempi e rapporti di convergenza.
»Stabilita' formule di quadratura (con dimostrazione).
»Convergenza di alcune formule di quadratura (legame con la convergenza uniforme).
»Il caso delle formule di Newton-Cotes, di quelle basate sull'integrazione di interpolanti in nodi di Chebyshev e delle formule composte.
»Esempi. - Estrapolazione:
»Il concetto di estrapolazione.
»Estrapolazione di Richardson.
»Le tabelle di estrapolazione.
»Formula dei trapezi composte e metodo di Romberg. - Algebra Lineare Numerica:
» Norma di vettori (definizione)
» Norme "p" e infinito.
» Esempi.
» Norme indotte di matrici (definizione).
» Raggio spettrale.
» Norme indotte di matrici (esempi p=1, p=2, p=inf).
» Sistemi perturbati Ax=b e numero di condizionamento (solo asserto, con esempio).
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare.
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare: complessita' computazionale.
» Risoluzione di sistemi lineari con eliminazione gaussiana (esempio matriciale).
» Matrici cui a priori e' applicabile l'eliminazione gaussiana: a predominanza diagonale, simmetriche definite positive.
» Fattorizzazione LU.
» Complessita' computazionale A=LU (senza dimostrazione).
» Risoluzione di sistemi lineari con eliminazione gaussiana e loro legame con la fattorizzazione LU.
» Problematiche della fattorizzazione LU e della risoluzione dei sistemi lineari.
» Esempio di risoluzione di sistemi lineari con eliminazione gaussiana con pivoting.
» Risoluzione di sistemi lineari con eliminazione gaussiana con pivoting.
» Matrici di permutazione.
» Fattorizzazione PA=LU.
» Risoluzione del sistema Ax=b, nota PA=LU.
» Tempi di calcolo.
» Fattorizzazione Cholesky e sua complessita'.
» Risoluzione del sistema Ax=b, nota la Fattorizzazione Cholesky
»Determinante di una matrice: complessita' Laplace vs LU.
»Inversa: cofattori vs LU.
» Metodi iterativi e metodi diretti: breve introduzione.
» Metodi iterativi stazionari: x^(k+1)=Bx^(k)+c.
» Metodi iterativi stazionari: legame tra metodo e soluzione di un problema di punto fisso.
» Metodi iterativi stazionari: un teorema di convergenza globale legato al raggio spettrale di B (senza dimostrazione).
» Metodo di Jacobi (esempio matrice 3 x 3).
» Metodo di Gauss-Seidel (esempio matrice 3 x 3).
» Metodi di Jacobi e Gauss-Seidel (caso generale).
» Splitting A=D-E-F.
» Splitting A=P-N.
» Splitting A=P-N: caso Jacobi.
» Splitting A=P-N: caso Gauss-Seidel.
» Convergenza di Jacobi/Gauss Seidel per matrici a pred. diag. stretta (senza dimostrazione).
» Convergenza di Gauss Seidel per matrici simmetriche definite positive (senza dimostrazione).
» Metodi iterativi e loro convergenza: esempio.
»Test di arresto.
»Sistemi sovradeterminati e soluzione ai minimi quadrati: definizione.
»Legame tra soluzione ai minimi quadrati ed equazioni normali (senza dimostrazione).
»Matrici rettangolari e fattorizzazione Cholesky.
»Risoluzione equazioni normali con fattorizzazione Cholesky.
»Risoluzione equazioni normali con fattorizzazione Cholesky: un esempio.
»Matrici rettangolari e fattorizzazione QR.
»Risoluzione equazioni normali con fattorizzazione QR.
»Risoluzione equazioni normali con fattorizzazione QR: un esempio.
»Matrici rettangolari e fattorizzazione SVD.
»Risoluzione equazioni normali con fattorizzazione SVD.
»Risoluzione equazioni normali con fattorizzazione SVD: un esempio.